Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (01): 161-169    DOI: 10.3866/PKU.WHXB201228161
CATALYSIS AND SURFACE SCIENCE     
Preparation and Properties of N-F Co-Doped TiO2 Photocatalyst with Wide Range Light Response and Multipore Structure from Ionic Liquid-Water Mixture Solvent
CHEN Xiao-Yun1, LU Dong-Fang2, HUANG Jin-Feng1, LU Yan-Feng1, ZHENG Jian-Qiang1
1. College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China;
2. College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
Download:   PDF(818KB) Export: BibTeX | EndNote (RIS)      

Abstract  A yellow N-F co-doped TiO2 photocatalyst (TiONF) exhibited high activity over a wide light spectrum range and a multipore structure was prepared by a hydrolysis-precipitation method using an ionic liquid ([Bmim]PF6)-water mixture as the solvent and TiCl4 as the precursor. Photocatalytic activity was investigated by the photocatalytic degradation of phenol under ultraviolet (UV), artificial visible (Vis), and solar light irradiation. X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), spectroscopy, and N2 adsorption-desorption were used for catalyst characterization. The results show that TiONF synthesis in an ionic liquid-water mixture solvent with suitable N-F doping gives high activity under UV, Vis, and solar light irradiation, and the activities are higher than those obtained by synthesis in pure water. The ionic liquid-water mixture solvent leads to N and F being incorporated into the TiO2 lattice and N-F co-doping can increase the amount of surface OH- on TiO2. The new bandgap formed by N-F doping can induce a second adsorption edge (450-530 nm), which can be excited by Vis irradiation and induce Vis activity. N-F co-doping retards the phase transformation. In addition, an ionic liquid-water mixture as a solvent benefits the dispersion of TiO2, increases the SBET and reduces the particle size.

Key wordsTiO2      N-F co-doping      Ionic liquid      Photocatalyst      Visible light     
Received: 16 August 2011      Published: 25 October 2011
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (31000269), Talent Training Program for Distinguished Young Scholars in Universities of Fujian Province, China (JA11072) and Education Department Foundation of Fujian Province, China (JA10121).

Corresponding Authors: CHEN Xiao-Yun     E-mail: chenxy_dicp@126.com
Cite this article:

CHEN Xiao-Yun, LU Dong-Fang, HUANG Jin-Feng, LU Yan-Feng, ZHENG Jian-Qiang. Preparation and Properties of N-F Co-Doped TiO2 Photocatalyst with Wide Range Light Response and Multipore Structure from Ionic Liquid-Water Mixture Solvent. Acta Phys. -Chim. Sin., 2012, 28(01): 161-169.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201228161     OR     http://www.whxb.pku.edu.cn/Y2012/V28/I01/161

(1) Yu, J. G.; Zhou, M. H.; Cheng, B.; Zhao, X. J. J. Mol. Catal. A-Chem. 2006, 246 (1-2), 176.
(2) Wawrzyniak, B.; Morawski, A.W. Appl. Catal. B-Environ. 2005, 62 (1-2), 150.
(3) Liu, S. X.; Chen, X. Y.; Chen, X. Chin. Chem. Lett. 2006, 17
(4) Mori, K.; Maki, K.; Kawasaki, S.; Yuan, S.; Yamashita, H. Chem. Eng. Sci. 2008, 63, 5066.  
(4) Mori, K.; Maki, K.; Kawasaki, S.; Yuan, S.; Yamashita, H. Chem. Eng. Sci. 2008, 63, 5066.
(5) Balek, V.; Li, D.; Subrt, J.; Vecerniková, E.; Hishitab, S.; Mitsuhashib, T.; Hanedab, H. J. Phys. Chem. Solid 2007, 68
(5-6), 770.
(7) Wu, Y. M.; Xing, M. Y.; Tian, B. Z.; Zhang, J. L.; Chen, F. Chem. Eng. J. 2010, 162, 710.  
(7) Wu, Y. M.; Xing, M. Y.; Tian, B. Z.; Zhang, J. L.; Chen, F. Chem. Eng. J. 2010, 162, 710.
(8) Chen. P.; Gu, M. Y.; Jin, Y. P. Progress in Chemistry 2005, 17
(1), 8. [程萍, 顾明元, 金燕苹. 化学进展, 2005, 17 (1), 8.]
(9) Tang, Y. C.; Huang, X. H.; Yu, H. Q.; Hu, C. Progress in Chemistry 2007, 19 (2-3), 225. [唐玉朝, 黄显怀, 俞汉青, 胡春. 化学进展, 2007, 19 (2-3), 225.]
(10) Lu,W. S.; Xiao, G. S.; Li, D. Z.; Fu, X. Z.;Wang, X. X. Chin. J. Inorg. Chem. 2005, 21 (10), 1495. [鲁文升, 肖光参, 李旦振, 付贤智, 王绪绪. 无机化学学报, 2005, 21 (10), 1495.]
(11) Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S. Appl. Catal. B 2003, 42 (4), 403.
(12) O, Regan, B.; Graetzel, M. Nature 1991, 353 (6346), 737.
(13) Nakamura, I.; Negishi, N.; Kutsuns, S.; Ihara, T.; Sugihara, S.; Takeuchi, K. J. Mol. Catal. A-Chem. 2000, 161 (1-2), 205.
(14) Ashia, R.; Ohwaki, T.; Ohwak, K.; Aoki, K.; Taga, Y. Science 2001, 293 (5528), 269.
(15) Hattori, A.; Tada, H. J. Sol-Gel. Sci. Technol. 2001, 22 (1-2), 47.
(17) Pelaez, M.; Cruz, A. A.; Stathatos, E.; Falaras, P.; Dionysiou, D. Catal. Today 2009, 144, 19.  
(17) Pelaez, M.; Cruz, A. A.; Stathatos, E.; Falaras, P.; Dionysiou, D. Catal. Today 2009, 144, 19.
(18) Lee, S. H.; Yamasue, E.; Ishihara, K. N.; Okumura, H. Appl. Catal. B-Environ. 2010, 93 (3-4), 217.
(19) Li, X. H.; Liu, S. X. Acta Phys. -Chim. Sin. 2008, 24 (11), 2019. [李晓辉, 刘守新. 物理化学学报, 2008, 24 (11), 2019.]
(20) Huang, D. G.; Liao, S. J.; Dang, Z. Acta. Chim. Sin. 2006, 64
(17), 1805. [黄冬根, 廖世军, 党志. 化学学报, 2006, 64
(17), 1805.]
(21) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N.; Labhsetwar, N. K. J. Fluorine Chem. 2005, 126 (1), 69.
(23) Yoo, K. S.; Choi, H.; Dionysiou, D. D. Catal. Commun. 2005, 6, 259.  
(23) Yoo, K. S.; Choi, H.; Dionysiou, D. D. Catal. Commun. 2005, 6, 259.
(25) Alammar, T.; Birkner, A.; Shekhah, O.; Mudring, A. V. Mater. Chem. Phys. 2010, 120, 109.  
(26) Liu, H.; Liang, Y. G.; Hu, H. J.;Wang, M. Y. Solid State Sci. 2009, 11, 1655.  
(27) Yu, N.; Gong, L.; Song, H. J.; Liu, Y.; Yin, D. H. J. Solid State Chem. 2007, 180, 799.  
(27) Yu, N.; Gong, L.; Song, H. J.; Liu, Y.; Yin, D. H. J. Solid State Chem. 2007, 180, 799.
(28) Choi, E. H.; Hong, S. I.; Moon, D. J. Catal. Lett. 2008, 123
(30) Benesi, H. A. J . Phys . Chem. 1957, 61, 970.  
(29) Wang, Z. Z.; Zhu, G. M.; Chen, B. Q. Chem. Eng. 2007, 141 (6), l4. [王振中, 朱光明, 陈北强. 化学工程师, 2007, 141 (6), l4.]
(32) Li, Y. X.; Jiang, Y.; Peng, S. Q.; Jiang, F. Y. J. Hazard. Mater. 2010, 182, 90.  
(33) Ling, Q. C.; Sun, J Z.; Zhou, Q Y. Appl. Surf. Sci. 2008, 254, 3236.  
(34) Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.  
(33) Ling, Q. C.; Sun, J Z.; Zhou, Q Y. Appl. Surf. Sci. 2008, 254, 3236.
(34) Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.
(35) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemann, D.W. Chem. Rev. 1995, 95, 693.
(36) Su, Y. L.; Li, Y.; Du, Y. X.; Lei, L. C. Acta Phys. -Chim. Sin. 2011, 27 (4), 939. [苏雅玲, 李轶, 杜瑛珣, 雷乐成. 物理化学学报, 2011, 27 (4), 939.]
(37) Chen, X. Y.; Liu, S. X. Acta Phys. -Chim. Sin. 2007, 23 (5), 701. [陈孝云, 刘守新. 物理化学学报, 2007, 23 (5), 701.]
(40) He, X.; David, A. Angew. Chem. Int. Edit. 2002, 41, 214.  
[1] Wenqiong CHEN,Yongji GUAN,Xiaoping ZHANG,Youquan DENG. Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 912-919.
[2] Zhinan HU,Jiantao ZUO,Meichen XIA,Dawei FANG,Shuliang ZANG. Study on Solution Enthalpies of Ionic Liquids [Cnmim][H2PO4] (n= 3, 4, 5, 6) by Using Pitzer's Equation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 933-937.
[3] Hui NING,Wenhang WANG,Qinhu MAO,Shirui ZHENG,Zhongxue YANG,Qingshan ZHAO,Mingbo WU. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 938-944.
[4] Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958.
[5] Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 414-423.
[6] Jing TONG,Ye QU,Liqiang JING,Lu LIU,Chunhui LIU. Measurement of Vapor Pressure and Vaporization Enthalpy for Ionic Liquids 1-Hexyl-3-methylimidazolium Threonine Salt[C6mim][Thr]by Isothermogravimetric Analysis[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 194-200.
[7] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[8] Yan-Shuang MENG,Chen WANG,Lei WANG,Gong-Rui WANG,Jun XIA,Fu-Liang ZHU,Yue ZHANG. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1915-1922.
[9] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[10] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[11] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[12] Qi-Ge ZHENG,Hui LIU,Quan XIA,Qing-Shan LIU,Lin MOU. Density, Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 736-744.
[13] Xiao-Ping GAO,Zhang-Long GUO,Ya-Nan ZHOU,Fang-Li JING,Wei CHU. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 602-610.
[14] Jin BAI,Xin CHEN,Zhao-Yi XI,Xiang WANG,Qiang LI,Shao-Zheng HU. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 611-619.
[15] Jing TONG,Lu LIU,Duo ZHANG,Xu ZHENG,Xia CHEN,Jia-Zhen YANG. Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala][J]. Acta Phys. -Chim. Sin., 2017, 33(3): 513-519.