Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (01): 195-200    DOI: 10.3866/PKU.WHXB201228195
Grafting Morphologies of TEPA on SBA-15(P) and Its Effect on CO2 Adsorption Performance
YANG Yong-Hong1,2, LI Fen-Fen1,3, YANG Cheng1, ZHANG Wen-Yu3, WU Jin-Hu1
1. Key Laboratory of Biofuels, Qindao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong Province, P. R. China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
3. Shandong Polytechnic University, Jinan 250353, P. R. China
Download:   PDF(813KB) Export: BibTeX | EndNote (RIS)      

Abstract  Various amine-functionalized CO2 adsorbents were prepared by incorporating tetraethylenepenthamine (TEPA) onto SBA-15(P) by controlling the impregnation method and its process. The materials were characterized using X-ray diffraction (XRD), N2-adsorption, elemental analysis, and Fourier transform infrared (FTIR) techniques. Their adsorptive capacities were determined by CO2-temperature programmed desorption (TPD). The results indicate that the dynamic impregnation process using a TEPA ethanol solution was successful in loading TEPA into the channels of SBA-15(P). Moreover, bonding formation between the highly dispersed TEPA and SBA-15(P) was facilitated to CO2 adsorption/desorption. Therefore, a binding mechanism is proposed. The -NH2 group of TEPA forms hydrogen bonds with -OH and C-O-C groups on SBA-15(P), which results in the better dispersion of TEPA. However, the dynamic impregnation process for the TEPA ethanol solution can effectively avoid the formation of hydrogen bonds between the intra- and inter-molecules resulting in the high adsorptive capacity of the amino groups in TEPA.

Key wordsSBA-15(P)      TEPA      CO2      Dynamic impregnation      Bond formation      Adsorptive capacity     
Received: 08 August 2011      Published: 27 October 2011
MSC2000:  O643  

The project was supported by the Natural Science Foundation of Shandong Province, China (2009ZRB01250) and Technology Development Program of Qingdao Government, China (1263194353127).

Corresponding Authors: YANG Cheng     E-mail:
Cite this article:

YANG Yong-Hong, LI Fen-Fen, YANG Cheng, ZHANG Wen-Yu, WU Jin-Hu. Grafting Morphologies of TEPA on SBA-15(P) and Its Effect on CO2 Adsorption Performance. Acta Phys. Chim. Sin., 2012, 28(01): 195-200.

URL:     OR

(1) Blauwhoff, P. M. M.; Versteeg, G. F.; Van Swaaij,W. P. M. Chemical Engineering Science 1984, 39, 207.  
(2) Zheng, F.; Tran, D. N.; Busche, B. J.; Fryxell, G. E.; Addleman, R. S.; Zemanian, T. S.; Aardahl, C. L. Industrial & Engineering Chemistry Research 2005, 44, 3099.  
(3) Chang, A. C. C.; Chuang, S. S. C.; Gray, M.; Soong, Y. Energy & Fuels 2003, 17, 468.  
(4) Gray, M. L.; Soong, Y.; Champagne, K. J.; Baltrus, J.; Stevens, R.W.; Toochinda, P.; Chuang, S. S. C. Separation and Purification Technology 2004, 35, 31.  
(5) Iyer, M. V.; Gupta, H.; Sakadjian, B. B.; Fan, L. S. Industrial & Engineering Chemistry Research 2004, 43, 3939.  
(6) Reddy, E. P.; Smirniotis, P. G. The Journal of Physical Chemistry B 2004, 108, 7794.  
(7) Bredesen, R.; Jordal, K.; Bolland, O. Chemical Engineering and Processing 2004, 43, 1129.  
(8) Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Industrial & Engineering Chemistry Research 2003, 42, 2427.  
(9) Demontigny, D.; Tontiwachwuthikul, P.; Chakma, A. Journal of Membrane Science 2006, 277, 99.  
(10) Xu, X. C.; Song, C. S.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W. Energy & Fuels 2002, 16, 1463.  
(11) Xu, X. C.; Song, C. S.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W. Microporous and Mesoporous Materials 2003, 62, 29.  
(12) Yoshitake, H.; Yokoi, T.; Tatsumi, T. Chemistry of Materials 2003, 15, 1713.  
(13) Han, Y. J.; Stucky, G. D.; Butler, A. Journal of the American Chemical Society 1999, 121, 9897.  
(14) Kubota, Y.; Nishizaki, Y.; Ikeya, H.; Saeki, M.; Hida, T.; Kawazu, S.; Yoshida, M.; Fujii, H.; Sugi, Y. Microporous and Mesoporous Materials 2004, 70, 135.  
(15) Matsumoto, A.; Tsutsumi, K.; Schumacher, K.; Unger, K. K. Langmuir 2002, 18, 4014.  
(16) Kimura, T.; Saeki, S.; Sugahara, Y.; Kuroda, K. Langmuir 1999, 15, 2794.  
(17) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. Journal of the American Chemical Society 1999, 121, 9611.  
(18) Feng, X.; Fryxell, G. E.;Wang, L. Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Science 1997, 276, 923.  
(19) Choi, S.; Drese, J. H.; Jones, C.W. ChemSusChem 2009, 2, 796.  
(20) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.  
(21) Yue, M. B.; Sun, L. B.; Cao, Y.;Wang, Z. J.;Wang, Y.; Yu, Q.; Zhu, J. H. Microporous and Mesoporous Materials 2008, 114, 74.  
(22) Aronu, U. E.; Svendsen, H. F.; Hoff, K. A.; Juliussen, O. Solvent Selection for Carbon dioxide Absorption Energy Procedia 2009, 1, 1051. 9th International Conference on Greenhouse Gas Control Technologies,Washington DC, Nov. 16-20, 2008.
(23) da Silva, E. F.; Svendsen, H. F. International Journal of Greenhouse Gas Control 2007, 1, 151.  
(24) Yoshitake, H.; Koiso, E.; Horie, H.; Yoshimura, H. Microporous and Mesoporous Materials 2005, 85, 183.  
(25) Hiyoshi, N.; Yogo, K.; Yashima, T. Microporous and Mesoporous Materials 2005, 84, 357.  
(26) Yue, M. B.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J. H. Advanced Functional Materials 2006, 16, 1717.  
(27) Knowles, G. P.; Graham, J. V.; Delaney, S.W.; Chaffee, A. L. Fuel Processing Technology 2005, 86, 1435.  
(28) Wu, D. A. Novel Method to Prepare Silica Based Carbon Dioxide Capture Sorbent. Ph. D. Dissertation, The University of Akron, Akron, 2008.
(29) Stevens,W. J. J.; Mertens, M.; Mullens, S.; Thijs, I.; Van Tendeloo, G.; Cool, P.; Vansant, E. F. Microporous and Mesoporous Materials 2006, 93, 119.  
(30) Wei, J.W.; Shi, J. J.; Pan, H.; Su, Q. F.; Zhu, J. B.; Shi, Y. Microporous and Mesoporous Materials 2009, 117, 596.  
(31) Cheng, C. F.; Lin, Y. C.; Cheng, H. H.; Chen, Y. C. Chemical Physics Letters 2003, 382, 496.  
(32) Ding, Z. J.; Chen, J. H.; Guo, Y.; Gong, X. Z. Bulletn of the Chinese Ceramic Society 2009, 28, 704. [丁志杰, 陈君华, 郭雨, 公旭中. 硅酸盐通报, 2009, 28, 704.]
(33) Su, Z. H.; Chen, Q. Y.; Li, J.; Liu, S. J. Acta Phys. -Chim. Sin. 2007, 23, 1760. [苏赵辉, 陈启元, 李洁, 刘士军. 物理化学学报, 2007, 23, 1760.]
(34) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. The Journal of Physical Chemistry B 2000, 104, 11465.  
(35) Yue, M. B.; Zhu, J. H. Chinese Journal of Catalysis 2008, 29, 1051. [岳明波, 朱建华. 催化学报, 2008 , 29, 1051.]
(36) Welcome toWikipedia, the free encyclopedia. bond (accessed Sep 07, 2011).
[1] GUO Yun-Peng, FENG Jie, LI Wen-Ying. Effect of Ni Doping on Electron Transfer in Ni/MgO Catalysts[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1796-1802.
[2] ZHOU Liang, ZHANG Xue-Hua, LIN Lin, LI Pan, SHAO Kun-Juan, LI Chun-Zhong, HE Tao. Visible-Light Photocatalytic Reduction of CO2 by CoTe Prepared via a Template-Free Hydrothermal Method[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1884-1890.
[3] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[4] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. Chim. Sin., 2017, 33(4): 845-852.
[5] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[6] WANG Juan, LI Shi-Kun, ZHAO Zhen-Chao, ZHOU Dan-Hong, LU An-Hui, ZHANG Wei-Ping. Density Functional Theory Study of CO2 Adsorption in Amine-Functionalized Carbonaceous Materials[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1666-1673.
[7] CHEN Feng-Feng, DONG Yan, SANG Xiao-Yan, ZHOU Yan, TAO Duan-Jian. Physicochemical Properties and CO2 Solubility of Tetrabutylphosphonium Carboxylate Ionic Liquids[J]. Acta Phys. Chim. Sin., 2016, 32(3): 605-610.
[8] HU Hai-Feng, HE Tao. Controllable Modulation of Morphology and Photocatalytic Performance of ZnO Nanomaterials via pH Adjustment[J]. Acta Phys. Chim. Sin., 2016, 32(2): 543-550.
[9] LI Ji-Hong, LIN Chang-Feng, QIN Wu, XIAO Xian-Bin, WEI Li. Synergetic Effect of Mercury Adsorption on the Catalytic Decomposition of CO over Perfect and Reduced Fe2O3[001] Surface[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2717-2723.
[10] CHENG Xiao-Meng, LI Yu, CHEN Zong, LI Hong-Ping, ZHENG Xiao-Fang. A Comparative Study on theNMR Relaxation of Methanol in Sub-and Super-Critical Mixtures of CO2 and Methanol[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2671-2677.
[11] ZHU Qing-Gong, SUN Xiao-Fu, KANG Xin-Chen, MA Jun, QIAN Qing-Li, HAN Bu-Xing. Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid[J]. Acta Phys. Chim. Sin., 2016, 32(1): 261-266.
[12] HUANG Yan, FU Min, HE Tao. Synthesis of g-C3N4/BiVO4 Nanocomposite Photocatalyst and Its Application in Photocatalytic Reduction of CO2[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1145-1152.
[13] ZHAO Yi, LIU Yong-Jun, ZHUO Shu-Ping. Reaction Mechanism and Regioselectivity of Cu(I)-Catalyzed Hydrocarboxylation of 1-Phenyl-propyne with Carbon Dioxide[J]. Acta Phys. Chim. Sin., 2015, 31(2): 237-244.
[14] DONG Wen-Da, ZHU He-Jun, DING Yun-Jie, PEI Yan-Peng, DU Hong, WANG Tao. Effect of Trace Amounts of Li Doping on Performance of Co/AC Catalysts for Syntheses of Mixed Linear α-Alcohols[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1745-1751.
[15] HU Jing-Xiu, ZHANG Jing, ZOU Jian-Feng, XIAO Qiang, ZHONG Yi-Jun, ZHU Wei-Dong. Nitrogen-Rich Microporous Carbon Derived from Melamine-Based Porous Polymer for Selective CO2 Adsorption[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1169-1174.