Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (01): 201-207    DOI: 10.3866/PKU.WHXB201228201
Effect of Primary Alkylamine Adsorption on Muscovite Hydrophobicity
LIU Zhen, LIU Gou-Sheng, YU Jian-Guo
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
Download:   PDF(2909KB) Export: BibTeX | EndNote (RIS)      

Abstract  The adsorption of surfactants on mineral surface has a great influence on the solid hydrophobicity and flotation behavior. The relationship between the hydrocarbon tail length of the primary alkylamines and muscovite hydrophobicity was investigated by contact angle measurement, atomic force microscopy (AFM), density functional theory (DFT), and molecular dynamics (MD) simulation. By comparing the oxygen density and the hydrogen bonds number profile, we observed that the formed hydrogen bonds for each water molecule on the interface between hydrocarbon tails and the water phase were fewer than that in the bulk. Additionally, the muscovite that absorbed alkylamines transformed from a hydrophilic surface to hydrophobic one. We also found that the octadecylamine (ODA)-absorbed muscovite surface was more hydrophobic than the dodecylamine (DDA)-absorbed surface while they were both in a monolayer state. Furthermore, because octadecylamine has a much lower hemi-micelle concentration (HMC) than dodecylamine, it forms multilayer more easily, meaning that the primary alkylamine with longer hydrocarbon tail is a better choice for the hydrophobicity enhancement of muscovite surface. The experimental results are in good agreement with theoretical calculations.

Key wordsMuscovite      Adsorption      Hydrophobicity      Atomic force microscopy      Molecular dynamics simulation     
Received: 18 July 2011      Published: 31 October 2011
MSC2000:  O647  

The project was supported by the National Natural Science Foundation of China (51164009).

Corresponding Authors: LIU Gou-Sheng     E-mail:
Cite this article:

LIU Zhen, LIU Gou-Sheng, YU Jian-Guo. Effect of Primary Alkylamine Adsorption on Muscovite Hydrophobicity. Acta Phys. Chim. Sin., 2012, 28(01): 201-207.

URL:     OR

(1) Patrick, H. N.;Warr, G. G.; Manne, S.; Aksay, I. A. Langmuir 1999, 15, 1685.  
(2) Nagarajan, R. Langmuir 2001, 18, 31.
(3) Fujii, M.; Li, B. Y.; Fukada, K.; Kato, T.; Seimiya, T. Langmuir 2001, 17, 1138.  
(4) Patil, K. G.; Santhanam, V.; Biswas, S. K.; Ayappa, K. G. J. Phys. Chem. C 2010, 114, 3549.  
(5) Vidyadhar, A.; Rao, K. H.; Chernyshova, I. V. Colloid Surf. A-Physicochem. Eng. Asp. 2003, 214, 127.  
(6) Wang, X. M.; Liu, J.; Du, H.; Miller, J. D. Langmuir 2010, 26, 3407.  
(7) Du, H.; Miller, J. D. Int. J. Miner. Process. 2007, 84, 172.  
(8) Zehl, T.;Wahab, A.; Schiller, P.; Mogel, H. J. Langmuir 2009, 25, 2090.  
(9) Zhang, R.; Liu, C.; Somasundaran, P. J. Colloid Interface Sci. 2007, 310, 377.  
(10) Liu, X. Y.; Li, C.; Tian,W. Y.; Chen, T.;Wang, L. H.; Zheng, Z.; Zhu, J. B.; Sun, M.; Liu, C. L. Acta Phys. -Chim. Sin. 2011, 27, 59. [刘晓宇, 黎春, 田文宇, 陈涛, 王路化, 郑仲, 朱建波, 孙茂, 刘春立. 物理化学学报, 2011, 27, 59. ]
(11) Song, Q. S.; Guo, X. L.; Yuan, S. L.; Liu, C. B. Acta Phys. -Chim. Sin. 2009, 25, 1053. [宋其圣, 郭新利, 苑世领, 刘成卜. 物理化学学报, 2009, 25, 1053.]
(12) Nishimura, S.; Scales, P. J.; Biggs, S.; Healy, T.W. Langmuir 2000, 16, 690.  
(13) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B.W. J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525.  
(14) Pugh, R. J.; Rutland, M.W.; Manev, E.; Claesson, P. M. Int. J. Miner. Process. 1996, 46, 245.  
(15) Zhang, R.; Somasundaran, P. Adv. Colloid Interface Sci. 2006, 123, 213.  
(16) Jiang, H.; Hu, Y. H.; Tan,W. Q.;Wang, Y. H.;Wang, D. Z. Chin. J. Nonferrous Met. 2001, 11, 688. [蒋昊, 胡岳华, 覃文庆, 王毓华, 王淀佐. 中国有色金属学报, 2001, 11, 688.]
(17) Kong, Y. X.; Di, Y. Y.; Zhang, Y. Q.; Yang,W.W.; Tan, Z. C. Thermochimi Acta 2009, 495, 33.  
(18) Heinz, H.; Koerner, H.; Anderson, K. L.; Vaia, R. A.; Farmer, B. L. Chem. Mat. 2005, 17, 5658.  
(19) Heinz, H.; Vaia, R. A.; Farmer, B. L.; Naik, R. R. J. Phys. Chem. C 2008, 112, 17281.  
(20) Heinz, H.; Vaia, R. A.; Farmer, B. L. J. Chem. Phys. 2006, 124, 224713.  
(21) Loewenstein,W. Am. Miner. 1954, 39, 92.
(22) Kuwahara, Y. Phys. Chem. Miner. 1999, 26, 198.  
(23) Bellaiche, L.; Vanderbilt, D. Phys. Rev. B 2000, 61, 7877.  
(24) Winkler, B.; Pickard, C.; Milman, V. Chem. Phys. Lett. 2002, 362, 266.  
(25) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.  
(26) Fuerstenau, D. J. Phys. Chem. 1956, 60, 981.  
(27) Fan, A.; Somasundaran, P.; Turro, N. J. Langmuir 1997, 13, 506.  
(28) Heinz, H.; Suter, U.W. J. Phys. Chem. B 2004, 108, 18341.  
(29) Trudeau, T. G.; Jena, K. C.; Hore, D. K. J. Phys. Chem. C 2009, 113, 20002.  
[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[3] LIU Fu-Feng, FAN Yu-Bo, LIU Zhen, BAI Shu. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1905-1914.
[4] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[5] CAO Liao-Ran, ZHANG Chun-Yu, ZHANG Ding-Lin, CHU Hui-Ying, ZHANG Yue-Bin, LI Guo-Hui. Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1354-1365.
[6] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[7] CHEN Yi-Jian, ZHOU Hong-Tao, GE Ji-Jiang, XU Gui-Ying. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1214-1222.
[8] CHEN Fang, LIU Yuan-Yuan, WANG Jian-Long, Su Ning-Ning, LI Li-Jie, CHEN Hong-Chun. nvestigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1140-1148.
[9] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[10] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[11] SCHLERETH, Andrew NOOMUNA Panae, GAO Pei. Mesoscale Protein Patterning on a Self-Assembled Monolayer Coated Silicon Surface through Nanosphere Lithography[J]. Acta Phys. Chim. Sin., 2017, 33(4): 810-815.
[12] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[13] LIU Qing-Kang, SONG Wen-Ping, HUANG Qi-Tao, ZHANG Guang-Yu, HOU Zhen-Xiu. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2472-2479.
[14] SUN Yi-Ran, YU Fei, MA Jie. Research Progress of Nanoconfined Water[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2173-2183.
[15] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.