Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (02): 331-337    DOI: 10.3866/PKU.WHXB201111021
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Enhanced Bonding between Noble Metal Adatoms and Graphene with Point Defects
XIE Peng-Yang, ZHUANG Gui-Lin, LÜ Yong-An, WANG Jian-Guo, LI Xiao-Nian
College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
Download:   PDF(1552KB) Export: BibTeX | EndNote (RIS)      

Abstract  The adhesion of Ag, Au, and Pt adatoms on pristine graphene and that containing point defects including N-substitution, B-substitution, and a single vacancy, as well as the interfacial properties of these systems, were investigated using density functional theory. The calculations show that Ag and Au cannot bind to pristine graphene. In contrast, B and N-doping increase the interaction between Ag, Au, or Pt metal adatoms and graphene, while a vacancy defect leads to the strong chemisorption of metal adatoms on graphene. Based on electronic structural analysis, N-doping strengthens the covalent bond between Au or Pt and carbon atoms, while B-doping leads to the formation of a chemical bond between Au or Ag and B. The vacancy defect acts as an anchoring site for metal adatoms and increases the bonding between metal adatoms and carbon atoms. Therefore, three types of point defect can effectively enhance the interaction between noble metal adatoms and graphene in the sequence: vacancy defect>>B-doping>N-doping.

Key wordsDensity functional theory      Graphene      Au      Pt      Ag     
Received: 22 July 2011      Published: 02 November 2011
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (20906081).

Corresponding Authors: ZHUANG Gui-Lin, WANG Jian-Guo     E-mail: jgw@zjut.edu.cn; glzhuang@zjut.edu.cn
Cite this article:

XIE Peng-Yang, ZHUANG Gui-Lin, LÜ Yong-An, WANG Jian-Guo, LI Xiao-Nian. Enhanced Bonding between Noble Metal Adatoms and Graphene with Point Defects. Acta Phys. Chim. Sin., 2012, 28(02): 331-337.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201111021     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I02/331

(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  
(2) Li, H.; Ma, X. Y.; Dong, J.; Qian,W. P. Anal. Chem. 2009, 81, 8916.  
(3) Li, Y. F.; Zhou, Z.; Shen, P.W.; Chen, Z. F. Acs Nano 2009, 3, 1952.  
(4) Saha, B.; Shindo, S.; Irle, S.; Morokuma, K. Acs Nano 2009, 3, 2241.  
(5) Xu, X. L.; Zhou, G. L.; Li, H. X.; Liu, Q.; Zhang, S.; Kong, J. L. Talanta 2009, 78, 26.  
(6) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2011, 27, 736. [杨勇辉, 孙红娟, 彭同江, 黄桥. 物理化学学报, 2011, 27, 736.]
(7) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.]
(8) Xu, N.; Kong, F. J.;Wang, Y. Z. Acta Phys. -Chim. Sin. 2011, 27, 559. [徐宁, 孔凡杰, 王延宗. 物理化学学报, 2011, 27, 559.]
(9) Sun, D. L.; Peng, S. L.; Ouyang, J.; Ouyang, F. P. Acta Phys. -Chim. Sin. 2011, 27, 1103. [孙大立, 彭盛霖, 欧阳俊, 欧阳方平. 物理化学学报, 2011, 27, 1103.]
(10) Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Science 2007, 315, 220.  
(11) Yoon, B.; Hakkinen, H.; Landman, U.;Worz, A. S.; Antonietti, J. M.; Abbet, S.; Judai, K.; Heiz, U. Science 2005, 307, 403.  
(12) Matthey, D.;Wang, J. G.;Wendt, S.; Matthiesen, J.; Schaub, R.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Science 2007, 315, 1692.  
(13) DeVries, G. A.; Brunnbauer, M.; Hu, Y.; Jackson, A. M.; Long, B.; Neltner, B. T.; Uzun, O.;Wunsch, B. H.; Stellacci, F. Science 2007, 315, 358.  
(14) Park, S.; Lee, K. S.; Bozoklu, G.; Cai,W.; Nguyen, S. T.; Ruoff, R. S. Acs Nano 2008, 2, 572
(15) Lightcap, I. V.; Kosel, T. H.; Kamat, P. V. Nano Lett. 2010, 10, 577.  
(16) Li, B.; Lu, G.; Zhou, X. Z.; Cao, X. H.; Boey, F.; Zhang, H. Langmuir 2009, 25, 10455.  
(17) Klusek, Z.; Dabrowski, P.; Kowalczyk, P.; Kozlowski,W.; Olejniczak,W.; Blake, P.; Szybowicz, M.; Runka, T. Appl. Phys. Lett. 2009, 95, 113114.  
(18) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S. G. Acta Phys. -Chim. Sin. 2011, 27, 858. [李云霞, 魏子栋, 赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27, 858.]
(19) Wu, X. Q.; Zong, R. L.; Mu, H. J.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3002. [吴小琴, 宗瑞隆, 牟豪杰, 朱永法. 物理化学学报, 2010, 26, 3002.]
(20) Wen, Z. L.; Yang, S. D.; Song, Q. J.; Hao, L.; Zhang, X. G. Acta Phys. -Chim. Sin. 2010, 26, 1570. [温祝亮, 杨苏东, 宋启军, 郝亮, 张校刚. 物理化学学报, 2010, 26, 1570.]
(21) Sutter, P.; Hybertsen, M. S.; Sadowski, J. T.; Sutter, E. Nano Lett. 2009, 9, 2654.  
(22) Xu, C.;Wang, X.; Zhu, J.W. J. Phys. Chem. C 2008, 112, 19841.  
(23) Jasuja, K.; Berry, V. Acs Nano 2009, 3, 2358.  
(24) Fullam, S.; Cottell, D.; Rensmo, H.; Fitzmaurice, D. Adv. Mater. 2000, 12, 1430.  
(25) Carrillo, A.; Swartz, J. A.; Gamba, J. M.; Kane, R. S.; Chakrapani, N.;Wei, B. Q.; Ajayan, P. M. Nano Lett. 2003, 3, 1437.  
(26) Li, J.; Moskovits, M.; Haslett, T. L. Chem. Mater. 1998, 10, 1963.  
(27) Azamian, B. R.; Coleman, K. S.; Davis, J. J.; Hanson, N.; Green, M. L. H. Chem. Commun. 2002, 366.
(28) Marsh, D. H.; Rance, G. A.; Whitby, R. J.; Giustiniano, F.; Khlobystov, A. N. J. Mater. Chem. 2008, 18, 2249.  
(29) Liu, L.;Wang, T. X.; Li, J. X.; Guo, Z. X.; Dai, L. M.; Zhang, D. Q.; Zhu, D. B. Chem. Phys. Lett. 2003, 367, 747.  
(30) Li, J.; Liu, C. Y. Eur. J. Inorg. Chem. 2010, 8, 1244.
(31) Pasricha, R.; Gupta, S.; Srivastava, A. K. Small 2009, 5, 2253.  
(32) Shen, J. F.; Shi, M.; Li, N.; Yan, B.; Ma, H.W.; Hu, Y. Z.; Ye, M. X. Nano Res. 2010, 3, 339.  
(33) Wen, Y. Q.; Xing, F. F.; He, S. J.; Song, S. P.;Wang, L. H.; Long, Y. T.; Li, D.; Fan, C. H. Chem. Commun. 2010, 46, 2596.  
(34) Liu, S.;Wang, J. Q.; Zeng, J.; Ou, J. F.; Li, Z. P.; Liu, X. H.; Yang, S. R. J. Power Sources 2010, 195, 4628.  
(35) Liu,W. C.; Lin, H. K.; Chen, Y. L.; Lee, C. Y.; Chiu, H. T. Acs Nano 2010, 4, 4149.  
(36) Kim, Y. K.; Na, H. K.; Min, D. H. Langmuir 2010, 26, 13065.  
(37) Zhang, Y.; Franklin, N.W.; Chen, R. J.; Dai, H. J. Chem. Phys. Lett. 2000, 331, 35.  
(38) Gingery, D.; Buhlmann, P. Carbon 2008, 46, 1966.  
(39) Bittencourt, C.; Felten, A.; Douhard, B.; Ghijsen, J.; Johnson, R. L.; Drube,W.; Pireaux, J. J. Chem. Phys. 2006, 328, 385.
(40) Wei, D. C.; Liu, Y. Q.;Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Nano Lett. 2009, 9, 1752.  
(41) Ghosh, K.; Kumar, M.; Maruyama, T.; Ando, Y. J. Mater. Chem. 2010, 20, 4128.  
(42) Liang, Y. X.; Shui, M.; Li, R. S. Acta Phys. -Chim. Sin. 2007, 23, 1647. [梁云霄, 水淼, 李榕生. 物理化学学报, 2007, 23, 1647.]
(43) Chi, M.; Zhao Y. P. Comp. Mater. Sci. 2009, 46, 1085.  
(44) Kang, J.; Deng, H. X.; Li, S. S.; Li, J. B. J. Phys.: Condens. Matter 2011, 23, 346001.  
(45) Jung, N.; Kim, B.; Crowther, A. C.; Kim, N.; Nuckolls, C.; Brus, L. Acs Nano 2011, 5, 5708.  
(46) Lv, Y. A.; Zhuang, G. L.;Wang, J. G.; Jia, Y. B.; Xie, Q. Phys. Chem. Chem. Phys. 2011, 13, 12472.
(47) Geng, D. S.; Yang, S. L.; Zhang, Y.; Yang, J. L.; Liu, J.; Li, R. Y.; Sham, T. K.; Sun, X. L.; Ye, S. Y.; Knights, S. Appl. Surf. Sci. 2011, 257, 9193.  
(48) Carlsson, J. M.; Hanke, F.; Linic, S.; Scheffler, M. Phys. Rev. Lett. 2009, 102, 166104.  
(49) Jack, R.; Sen, D.; Buehler, M. J. J. Comput. Theor. Nanos. 2010, 7, 354.  
(50) Palacios, J. J.; Fernandez-Rossier, J.; Brey, L. Phys. Rev. B 2008, 77, 195428.  
(51) Liu, X. M.; Romero, H. E.; Gutierrez, H. R.; Adu, K.; Eklund, P. C. Nano Lett. 2008, 8, 2613.  
(52) Williams, Q. L.; Liu, X.;Walters,W.; Zhou, J. G.; Edwards, T. Y.; Smith, F. L. Appl. Phys. Lett. 2007, 91, 143116.  
(53) Lv, Y. A.; Cui, Y. H.; Xiang, Y. Z.;Wang, J. G.; Li, X. N. Comp. Mater. Sci. 2010, 48, 621.  
(54) Lee, D. H.; Lee,W. J.; Kim, S. O. Nano Lett. 2009, 9, 1427.  
(55) Late, D. J.; Ghosh, A.; Subrahmanyam, K. S.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N. R. Solid State Commun. 2010, 150, 734.  
(56) Dai, X. Q.; Li, Y. H.; Zhao, J. H.; Tang, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 369. [戴宪起, 李艳慧, 赵建华, 唐亚楠. 物理化学学报, 2011, 27, 369.]
(57) Hu, L. B.; Hu, X. R.;Wu, X. B.; Du, C. L.; Dai, Y. C.; Deng, J. B. Phys. B-Condens. Matter 2010, 405, 3337.  
(58) Chan, K. T.; Neaton, J. B.; Cohen, M. L. Phys. Rev. B 2008, 77, 235430.  
(59) Boukhvalov, D.W.; Katsnelson, M. I. Appl. Phys. Lett. 2009, 95, 023109.  
(60) Akturk, O. U.; Tomak, M. Phys. Rev. B 2009, 80, 085417
(61) Valencia, H.; Gil, A.; Frapper, G. J. Phys. Chem. C 2010, 114, 14141.  
(62) Rodriguez-Manzo, J. A.; Cretu, O.; Banhart, F. Acs Nano 2010, 4, 3422.  
(63) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. B 1996, 77, 3865.  
(64) Giannozzi, P.; Baroni, S.; Bonini, N.; et al . J. Phys.: Condens. Matter 2009, 21, 395502.  
(65) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.  
(66) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.  
(67) Huang, B. Phys. Lett. A 2011, 375, 845.  
(68) Wang, J. G.; Lv, Y. A.; Li, X. N.; Dong, M. D. J. Phys. Chem. C 2009, 113, 890.  
[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[4] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[5] FANG Lei, SUN Mingjun, CAO Xinrui, CAO Zexing. Mechanical and Optical Properties of a Novel Diamond-like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor:a First-Principles Study[J]. Acta Phys. Chim. Sin., 2018, 34(3): 296-302.
[6] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[7] DING Xiaoqin, DING Junjie, LI Dayu, PAN Li, PEI Chengxin. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Phys. Chim. Sin., 2018, 34(3): 314-322.
[8] GHARA Manas, CHATTARAJ Pratim K. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects[J]. Acta Phys. Chim. Sin., 2018, 34(2): 201-207.
[9] SONG Xue-Jiao, LIU Zhuang. Applications of Nanotechnology for Physical Stimulus-Responsive Cancer Therapies[J]. Acta Phys. Chim. Sin., 2018, 34(2): 123-139.
[10] HUANG Xiang-Feng, LIU Wan-Qi, XIONG Yong-Jiao, PENG Kai-Ming, LIU Jia, LU Li-Jun. Application and Effect of Functional Magnetic Nanoparticles in Emulsion Preparation and Demulsification[J]. Acta Phys. Chim. Sin., 2018, 34(1): 49-64.
[11] LEI Gang, HE Yan. Applications of Single Plasmonic Nanoparticles in Biochemical Analysis and Bioimaging[J]. Acta Phys. Chim. Sin., 2018, 34(1): 11-21.
[12] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[13] LIU Jin-Long, LIN Liang-Zhen, HU Jin-Feng, BAI Ming-Jie, CHEN Liang-Xian, WEI Jun-Jun, HEI Li-Fu, LI Cheng-Ming. Reaction Process and Luminescence Mechanism of Carbon Nanodots Prepared by Microwave Synthesis[J]. Acta Phys. Chim. Sin., 2018, 34(1): 92-98.
[14] XIAO Jie, ZHANG Bo, ZHENG Zhao-Lei. Development and Validation of a Reduced Chemical Kinetic Mechanism for HCCI Engine of Biodiesel Surrogate[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1752-1764.
[15] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.