Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (02): 343-348    DOI: 10.3866/PKU.WHXB201111031
ELECTROCHEMISTRY AND NEW ENERGY     
Synthesis and Electrochemical Performance of LiCoPO4 by Sol-Gel Method
WANG Shao-Liang, TANG Zhi-Yuan, SHA Ou, YAN Ji
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
Download:   PDF(1051KB) Export: BibTeX | EndNote (RIS)      

Abstract  High potential cathode material LiCoPO4 was synthesized by sol-gel method. The effects of different sintering conditions on the crystal structure, surface morphology and electrochemical performance of LiCoPO4 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge-discharge tests. The results show that the sample synthesized at 650 ° C for 12 h has a good crystalline orthorhombic olivine-type structure and a uniform particle distribution (0.2-0.4 μm), which delivers the best electrochemical performance. The discharge capacity of the sample at 1C rate can reach 122.7 mAh·g-1. Moreover, from the charge and discharge profiles, two charge/discharge plateaus are presented and they become more obvious with the increase of charge/discharge rate. This phenomenon can be interpreted by considering the two-step extraction/insertion behavior of Li+ in LiCoPO4.

Key wordsLithium-ion battery      LiCoPO4      Cathode material      Sol-gel method     
Received: 19 August 2011      Published: 03 November 2011
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (20973124).

Corresponding Authors: TANG Zhi-Yuan     E-mail: zytang@tju.edu.cn
Cite this article:

WANG Shao-Liang, TANG Zhi-Yuan, SHA Ou, YAN Ji. Synthesis and Electrochemical Performance of LiCoPO4 by Sol-Gel Method. Acta Phys. Chim. Sin., 2012, 28(02): 343-348.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201111031     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I02/343

(1) Murugan, A. V.; Muraliganth, T.; Ferreira, P. J.; Manthiram, A. Inorg. Chem. 2009, 48, 946.  
(2) Fisher, C. A. J.; Prieto V. M. H.; Islam, M. S. Chem. Mater. 2008, 20, 5907.  
(3) Muraliganth, T.; Manthiram, A. J. Phys. Chem. C 2010, 114, 15530.  
(4) Yang, J. S.; Xu, J. J. J. Electrochem. Soc. 2006, 153, A716.
(5) Murugan, A. V.; Muraliganth, T.; Manthiram, A. J. Electrochem. Soc. 2009, 156, A79.
(6) Li, H. H.; Jin, J.;Wei, J. P.; Zhou, Z.; Yan, J. Electrochem. Commun. 2009, 11, 95.  
(7) Jang, I. C.; Lim, H. H.; Lee, S. B.; Karthikeyan, K.; Aravindan, V.; Kang, K.S.; Yoon,W. S.; Cho,W. I.; Lee, Y. S. J. Alloys. Compd. 2010, 497, 321.  
(8) Han, D.W.; Kang, Y. M.; Yin, R. Z.; Song, M. S.; Kwon, H. S. Electrochem. Commun. 2009, 11, 137.  
(9) Wang, F.; Yang, J.; Nuli Y. N.;Wang J. L. J. Power Sources 2011, 196, 4806.  
(10) Zhao, Y. J.;Wang, S. J.; Zhao, C. S.; Xia, D. G. Rare Metals 2009, 28, 17.
(11) Bhuwaneswari, M. S.; Dimesso, L.; Jaegermann,W. J. Sol-Gel Sci. Technol. 2010, 56, 320.  
(12) Poovizhi, P. N.; Selladurai, S. Ionics 2011, 17, 13
(13) Gangulibabu; Bhuvaneswari, D.; Kalaiselvi, N.; Jayaprakash, N.; Periasamy, P. J. Sol-Gel Sci Technol. 2009, 49, 137.  
(14) Lucangelo, D.; Susanne, J.; Christina, S.;Wolfram, J. J. Solid State 2011 (accepted).
(15) Huang, Y. H.; Tong, Z. F.;Wei, T. Y.; Li, B. Acta Phys. -Chim. Sin. 2011, 27, 1325. [黄映恒, 童张法, 韦藤幼, 李斌. 物理化学学报, 2011, 27, 1325]
(16) Tong, H.; Hu, G. H.; Hu, G. R.; Peng, Z. D.; Zhang, X. L. Chin. J. Inorg. Chem. 2006, 22, 2159. [童汇, 胡国华, 胡国荣, 彭忠东, 张新龙. 无机化学学报, 2006, 22, 2159.]
(17) Park, K. S.; Kang, K. T.; Lee, S. B.; Kim, G. Y.; Park, Y. J.; Kim, H. G. Mater. Res. Bull. 2004, 39, 1803.  
(18) Bramnik, N. N.; Bramnik, K. G.; Buhrmester, T.; Baehtz, C.; Ehrenberg, H.; Fuess, H. J. Solid State Eletrochem. 2004, 8, 558.
(19) Bramnik, N. N.; Nikolowski, K.; Baehtz, C.; Bramnik, K. G.; Ehrenberg, H. Chem. Mater. 2007, 19, 908.  
(20) Nakayama, M.; Goto, S.; Uchimoto, Y.;Wakihara, M.; Kitajima, Y. Chem. Mater. 2004, 16, 3399.  
(21) Tang, Z. Y.; Xue, J. J.; Liu, C. Y.; Zhuang, X. G. Acta Phys. -Chim. Sin. 2001, 17, 385. [唐致远, 薛建军, 刘春燕, 庄新国. 物理化学学报, 2001, 17, 385.]
[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[5] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[7] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[8] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[9] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[10] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(1): 211-241.
[11] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[12] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.
[13] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1866-1879.
[14] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[15] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1489-1494.