Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (01): 189-194    DOI: 10.3866/PKU.WHXB201111152
Influence of Functional Group Decoration on Gas Adsorption in MOF-5
CHEN Chi, PANG Jun, HAN Shuang, ZHANG Bi-Xia, HUANG Yuan, MIAO Ling, JIANG Jian-Jun
Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Download:   PDF(1636KB) Export: BibTeX | EndNote (RIS)      

Abstract  This paper presents a comprehensive study about the adsorption ability of five different sites in metal-organic framework (MOF-5), including pure and different groups (―NO2, ―NH2, ―CH3, ― OZn) decorated ones, for CO2 and other greenhouse gases and industrial waste gases. The selective adsorption ability was investigated based on the tight binding approximation method. The results show that sites I and II are the major adsorption sites for pure MOF-5. The highest adsorption energy can be -0.25 eV. Group decoration enhances the adsorption ability of MOF-5 when adsorbing CO2, which is highly related to the activity of decorated groups and the local configurations. Among these groups, ― NO2 enhances the adsorption ability of all sites for CO2 absorption. The ―NO2 decorated MOF-5 shows an obvious selective adsorption ability for different gases in the air environment (O2, N2, H2O, CO2) and for industrial waste gases environment (CO2, CO, NO, NO2, SO2, SO3).

Key wordsTight binding approximation      MOF-5      Decoration of functional group      Greenhouse gas      Adsorption     
Received: 09 September 2011      Published: 15 November 2011
MSC2000:  O647  

The project was supported by the National Natural Science Foundation of China (50771047).

Corresponding Authors: MIAO Ling     E-mail:
Cite this article:

CHEN Chi, PANG Jun, HAN Shuang, ZHANG Bi-Xia, HUANG Yuan, MIAO Ling, JIANG Jian-Jun. Influence of Functional Group Decoration on Gas Adsorption in MOF-5. Acta Phys. Chim. Sin., 2012, 28(01): 189-194.

URL:     OR

(1) Liang, Z. J.; Marshall, M.; Chaffee, A. L. Microporous and Mesoporous Materials 2010, 132, 305.  
(2) Tomic, E. A. Journal of Applied Polymer Science 1965, 9, 3745.  
(3) James, S. L. Chem. Soc. Rev. 2003, 32, 276.  
(4) Rowsell, J. L. C.; Yaghi, O. M. Microporous and Mesoporous Materials 2004, 73, 3.  
(5) Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353.  
(6) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.  
(7) Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294.  
(8) Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.  
(9) Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.; Kitagawa, S. Angew. Chem. Int. Edit. Engl. 1997, 36, 1725.  
(10) Yang, C.;Wang, X. P.; Omary, M. A. J. Am. Chem. Soc. 2007, 129, 15454.  
(11) Llewellyn, P. L.; Bourrelly, S.; Serre, C.; Vimont, A.; Daturi, M.; Hamon, L.; DeWeireld, G.; Chang, J. S.; Hong, D. Y.; Hwang, Y. K.; Jhung, S. H.; Ferey, G. Langmuir 2008, 24, 7245.  
(12) Glover, T. G.; Peterson, G.W.; Schindler, B. J.; Britt, D.; Yaghi, O. M. Chemical Engineering Science 2011, 66, 163.  
(13) Watanabe, T.; Sholl, D. S. J. Chem. Phys. 2010, 133, 094509.  
(14) Cao,W. X.; Li, Y.W.;Wang, L.; Liao, S. J. J. Phys. Chem. C 2011, 115, 13829.  
(15) Krishna, R.; Long, J. R. J. Phys. Chem. C 2011, 115, 12941.  
(16) Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.  
(17) Walton, K. S.; Millward, A. R.; Dubbeldam, D. J. Am. Chem. Soc. 2008, 130, 406.  
(18) Babarao, R.; Jiang, J.W. Langmuir 2008, 24, 5474.  
(19) Rowsell, J. L. C.; Spencer, E. C.; Eckert, J. Science 2005, 309, 1350.  
(20) Blomqvist, A.; Araujo, C. M.; Srepusharawoot, P.; Ahuja, R. PNAS 2007, 104, 20173.  
(21) Deng, H. X.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.;Wang, B.; Yaghi, O. M. Science 2010, 327, 846.  
(22) Zeng, Y. Y.; Zhang, B. J. Acta Phys. -Chim. Sin. 2008, 24, 1493. [曾余瑶, 张秉坚. 物理化学学报, 2008, 24, 1493.]
(23) Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys. Rev. B 1998, 58, 7260.  
(24) Aradi, B.; Hourahine, B.; Frauenheim, T. J. Phys. Chem. A 2007, 111, 5678.  
(26) Hohenberg, P.; Kohn,W. Phys. Rev. 1964, 136, B864.
(27) Kohn,W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
(28) Portal, D. S.; Ordejón, P.; Artacho, E.; Soler, J. M. J. Quantum Chem. 1997, 65, 453.  
(29) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  
(30) Zhang, Z.W.; Li, J. C.; Jiang, Q. Front. Phys. 2011, 6 (2), 162.
(31) Grajciar, L.; D.Wiersum, A.; Llewellyn, L. P.; Chang, J. S.; Nachtigall, P. J. Phys. Chem. C 2011, DOI: 10.1021/jp206002d.
(32) Dubbeldam, D.; Frost, H.;Walton, K. S.; Snurr, R. Q. Fluid Phase Equilibria 2007, 61, 152.
(33) Yildirim, T.; Hartman, M. R. Phys. Rev. Lett. 2005, 95, 215504.  
(34) Xu, Q.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L.; Mi, J. G. J. Mater. Chem. 2010, 20, 706.  
(35) Yang, Q.; Ma, L.; Zhong, C.; An, X. H.; Liu, D. J. Phys. Chem. C 2011, 115, 2790.  
[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[3] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[6] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[7] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[8] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[9] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[10] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[11] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[12] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.
[13] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2133-2145.
[14] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1933-1940.
[15] JIAN Yuan, MU Wan-Jun, LIU Ning, PENG Shu-Ming. Removal of Sr2+ Ions by Ta-Doped Hexagonal WO3: Zeta Potential Measurements and Adsorption Mechanism Determination[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2052-2058.