Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (02): 315-323    DOI: 10.3866/PKU.WHXB201111232
Adsorption Structure and Energy of Pyridine Confined inside Zeolite Pores
HAN Bing1,2, CHU Yue-Ying1,2, ZHENG An-Min1, DENG Feng1
1. Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(2361KB) Export: BibTeX | EndNote (RIS)      

Abstract  The performance of different exchange-correlation functionals for the description of the interaction of pyridine with different cluster models of ZSM-5 zeolite has been assessed. Theoretical calculations show that upon increasing the cluster model from 8T to 128T, the adsorption energy of pyridine in ZSM-5 zeolite increases gradually and reaches convergence by the 72T cluster model. On the basis of the 72T cluster model, the pyridine adsorption energy calculated with different functionals is further examined. Compared to the conventional functionals (B3LYP and M06-2X), the B97D functional which takes into account the dispersion correction provides calculated results that agree well with experimental data. The present results indicate that the B97D functional is suitable for studying long-range interactions in weakly interacting systems.

Key wordsQuantum chemical calculation      Zeolite      Confinement effect      Adsorption energy     
Received: 09 October 2011      Published: 23 November 2011
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (21073228, 20933009, 20921004) and National Key Basic Research Program of China (973) (2009CB918600).

Corresponding Authors: ZHENG An-Min, DENG Feng     E-mail:;
Cite this article:

HAN Bing, CHU Yue-Ying, ZHENG An-Min, DENG Feng. Adsorption Structure and Energy of Pyridine Confined inside Zeolite Pores. Acta Phys. Chim. Sin., 2012, 28(02): 315-323.

URL:     OR

(1) Weitkamp, J.; Traa, Y. Catal. Today 1999, 49, 193.  
(2) Slagtern, A.; Dahl, I. M.; Jens, K. J.; Myrstad, T. App. Catal. A: Gen. 2010, 375, 213.  
(3) Luzgin, M. V.; Parmon, V. N. Angew. Chem. Int. Edit. 2008, 47, 4559.  
(4) Yu, Z.W.; Zheng, A. M.;Wang, Q.; Huang, S. J.; Deng, F.; Liu, S. B. Chin. J. Magn. Reson. 2010, 27, 485. [喻志武, 郑安民, 王强, 黃信炅, 邓风, 刘尚斌. 波谱学杂志, 2010, 27, 485.]
(5) Zheng, A. M.; Huang, S. J.; Deng, F.; Liu, S. B. Phys. Chem. Chem. Phys. 2011, 13, 14889.
(6) Zheng, A. M.; Zhang, H. L.; Chen, L.; Yue, Y.; Ye, C. H.; Deng, F. J. Phys. Chem. B 2007, 111, 3085.  
(7) Coma, A. Chem. Rev. 1995, 95, 559.  
(8) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Peng, S. Y. Acta Physico- Chimica Sinica 2001, 17, 811. [袁淑萍, 王建国, 李永旺, 彭少逸. 物理化学学报, 2001, 17, 811.]
(9) Yang, J.; Sun, Y. X.; Zhao, L. F.; Sun, H. Acta Physico-Chimica Sinica 2011, 27, 1823. [杨静, 孙迎新, 赵立峰, 孙淮. 物理化学学报, 2011, 27, 1823.]
(10) Yang, G.;Wang, Y.; Zhou, D. H.; Zhuang, J. Q.; Liu, X. C.; Han, X.W.; Bao, X. H. J. Chem. Phys. 2003, 119, 9765.  
(11) Zhou, D. H.; Ma, D.; Liu, X. C.; Bao, X. H. J. Chem. Phys. 2001, 114, 9125.  
(12) Hohenberg, P.; Kohn,W. Phys. Rev. 1964, 136, 864.  
(13) Kohn,W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974.  
(14) Kristyan, S.; Pulay, P. Chem. Phys. Lett. 1994, 229, 175.  
(15) Schmider, H. L.; Becke, A. D. J. Chem. Phys. 1998, 108, 9624.  
(16) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364.  
(17) Grimme, S. J. Comput. Chem. 2004, 25, 1463.  
(18) Grimme, S. J. Comput. Chem. 2006, 27, 1787.  
(19) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. C 2008, 112, 6860.  
(20) Pidko, E. A.; Hensen, E. J. M.; van Santen, R. A. J. Phys. Chem. C 2008, 112, 19604.  
(21) Boronat, M.; Martinez, C.; Corma, A. Phys. Chem. Chem. Phys. 2011, 13, 2603.
(22) Boekfa, B.; Choomwattana, S.; Khongpracha, P.; Limtrakul, J. Langmuir 2009, 22, 12990.
(23) Vankoningsveld, H.; Van Bekkum, H.; Jansen, J. C. Acta Crystallogr. B 1987, 43, 127.  
(24) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, B.01; Gaussian Inc.:Wallingford, CT, 2009.
(25) Maseras, F.; Morokuma, K. J . Comput. Chem. 1995, 16, 1170.  
(26) Humbel, S.; Siebe, R. S.; Morokuma, K. J. Chem. Phys. 1996, 105, 1959.  
(27) Lesthaeghe, D.; Speybroeck, V. V.; Marin, G. B.;Waroquier, M. Chem. Phys. Lett. 2006, 417, 309.  
(28) Sumpter, B. G. J. Chem. Theory Comput. 2010, 6, 727.  
(29) Rigby, A. M.; Kramer, G. J.; van Santen, R. A. J. Catal. 1997, 170, 1.  
(30) Zheng, X.; Blowers, P. J. Phys. Chem. A 2006, 110, 2455.  
(31) Zheng, A. M.; Zhang, H. L.; Lu, X.; Liu, S. B.; Deng, F. J. Phys. Chem. B 2008, 112, 4496.
(32) Zheng, A. M.; Huang, S.; Chen,W.;Wu, P.; Zhang, H.; Lee, H.; Ménorval, L.; Deng, F.; Liu, S. B. J. Phys. Chem. A 2008, 112, 7337.
(33) Brand, H. V.; Curtiss, L. A.; Iton, L. E. J. Phys. Chem. 1993, 97, 12773.  
(34) Datka, J.; Boczar, M.; Rymarowicz, P. J. Catal. 1988, 114, 368.  
(35) Dunne, J. A.; Rao, M.; Sircar, S.; Corte, R. J.; Myers, A. L. Langmuir 1996, 12, 5896.  
(36) Savitz, S.; Siperstein, F.; Rorte, R. J.; Myers, A. L. J. Phys. Chem. B 1998, 102, 6865.
(37) Lee, C.; Parrillo, D. J.; Gorte, R. J.; Farneth,W. E. J. Am. Chem. Soc. 1996, 118, 3262.  
(38) Fuchs, A. H.; Adamo, C. J. Phys. Chem. Lett. 2010, 1, 763.  
[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] DU Jun, WU Xiang-Ying, PAN Xing-Peng, YU Jiang. Oxygenation and Oxidation Desulfurization Properties of CeO2/NaY Catalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2337-2345.
[3] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1785-1794.
[4] SUN Li-Yuan, ZHANG Ya-Fei, GONG Yan-Jun. Structural Features and Application of Micro-Microporous Composite Zeolites[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1105-1122.
[5] ZOU Jing, FAN Zhi-Lin, JIANG Li-Sha, ZHOU Dan-Hong. Theoretical Study of the Solvent Adsorption on Ti-Peroxo Active Center in Ti-MWW Zeolite[J]. Acta Phys. Chim. Sin., 2016, 32(4): 935-942.
[6] ZHAO Shu-Heng, LANG Lin, JIANG Jun-Fei, YIN Xiu-Li, WU Chuang-Zhi. Synthesis and Low-Temperature Detemplation of High-Silica MFI Zeolite Membranes[J]. Acta Phys. Chim. Sin., 2016, 32(2): 519-526.
[7] HAO Xu-Qiang, YANG Hao, JIN Zhi-Liang, XU Jing, MIN Shi-Xiong, Lü Gong-Xuan. Quantum Confinement Effect of Graphene-Like C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production fromWater Splitting[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2581-2592.
[8] ZHAO Zhen-Chao, ZHANG Wei-Ping. Two-Dimensional Layered Zeolite Precursors: Syntheses, Modifications and Catalytic Applications[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2475-2487.
[9] XU Ke, CHENG Yi, SUN Bo, PEI Yan, YAN Shi-Run, QIAO Ming-Hua, ZHANG Xiao-Xin, ZONG Bao-Ning. Fischer-Tropsch Synthesis over Skeletal Co@HZSM-5 Core-Shell Catalysts[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1137-1144.
[10] ZHAO Shu-Heng, LANG Lin, YIN Xiu-Li, YANG Wen-Shen, WU Chuang-Zhi. TPAOH Template Removal from High-Silica ZSM-5 by Low-Temperature Hydrocracking[J]. Acta Phys. Chim. Sin., 2015, 31(4): 793-799.
[11] ZHANG Lan-Lan, SONG Yu, LI Guo-Dong, ZHANG Shao-Long, SHANG Yun-Shan, GONG Yan-Jun. ZSM-5 Zeolite with Micro-Mesoporous Structures Synthesized Using Different Templates for Methanol to Propylene Reaction[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2139-2150.
[12] CHEN Li, XUE Teng, ZHU Shu-Yan, WANG Yi-Meng. One-Step Synthesis of Hierarchical ZSM-5 Zeolite Microspheres Using Alkyl-Polyamines as Single Templates[J]. Acta Phys. Chim. Sin., 2015, 31(1): 181-188.
[13] MIAO Hai-Xia, MA Li, MA Jing-Hong, LI Dui-Chun, LI Rui-Feng. Benzylation of Naphthalene over a Mesoporous ZSM-5 Zeolite Microsphere Catalyst[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1518-1526.
[14] MI Chuan-Tong, LIU Guo-Ping, WANG Jia-Jia, GUO Xin-Li, WU San-Xie, YU Jin. First-Principles Calculations of the Adsorption of Au, Ag and Cu Atoms on Defected Graphene[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1230-1238.
[15] ZHANG Shao-Long, ZHANG Lan-Lan, WANG Wu-Gang, MIN Yuan-Yuan, MATong, SONG Yu, GONG Yan-Jun, DOU Tao. Methanol to Propylene over Nanosheets of HZSM-5 Zeolite[J]. Acta Phys. Chim. Sin., 2014, 30(3): 535-543.