Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (02): 338-342    DOI: 10.3866/PKU.WHXB201111242
ELECTROCHEMISTRY AND NEW ENERGY     
Effect of Doping with Ti4+ Ion on the Electrochemical Performance of LiFe0.6Mn0.4PO4/C
GAO Ping1,2, TAN Zhuo1,2, CHENG Fu-Quan2, ZHOU Heng-Hui2, TAN Song-Ting1
1. College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China;
2. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download:   PDF(2071KB) Export: BibTeX | EndNote (RIS)      

Abstract  Ti-doped LiFe0.6Mn0.4PO4/C materials were synthesized by a solid-state method. The structures, morphologies, and electrochemical performance of the materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge-discharge experiments. The results indicate that Ti4+ doping does not change the structure of the materials, but remarkably improves their electrochemical performance. Li(Fe0.6Mn0.4)0.96Ti0.02PO4/C shows excellent rate performance, with initial specific discharge capacities of 160.3 and 134.7 mAh·g-1 at 0.1C and 10C rates. Even at the higher rate of 20C, it shows a discharge capacity of 124.4 mAh·g-1. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) analyses show that the resistance and the polarization of the LiFe0.6Mn0.4PO4/C composite electrode could be effectively decreased by Ti4+ doping, which would account for the improved electrode performance.

Key wordsLithium-ion battery      LiFe1-xMnxPO4      Cathode material      Ion doping      Rate capacity     
Received: 13 September 2011      Published: 24 November 2011
MSC2000:  O646  
Fund:  

The project was supported by the National High-Tech Research and Development Program of China (863) (2009AA035200).

Corresponding Authors: ZHOU Heng-Hui, TAN Song-Ting     E-mail: hhzhou@pku.edu.cn; tanst2008@163.com
Cite this article:

GAO Ping, TAN Zhuo, CHENG Fu-Quan, ZHOU Heng-Hui, TAN Song-Ting. Effect of Doping with Ti4+ Ion on the Electrochemical Performance of LiFe0.6Mn0.4PO4/C. Acta Phys. Chim. Sin., 2012, 28(02): 338-342.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201111242     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I02/338

(1) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.  
(2) Nie, Z. X.; Ouyang, C. Y.; Chen, J. Z.; Zhong, Z. Y.; Du, Y. L.; Liu, D. S.; Shi, S. Q. Solid .State. Commun. 2010, 150, 40.  
(3) Yamada, A.; Kudo, Y.; Liu, K. Y. J. Electrochem. Soc. 2001, 148, A747.
(4) Atsuo, Y.; Sai, C. C. J. Electrochem. Soc. 2001, 148, A960.
(5) Matthew, R. R.; Girts, V.; Guy, D.; John, R. O. J. Electrochem. Soc. 2010, 157, A381.
(6) Tatsuya, N.; Kiyotaka, S.; Shiro, S.; Yo, K.; Mitsuharu, T.; Yoshihiro, Y. J. Electrochem. Soc. 2007, 54, A1118.
(7) Dong, H. B.; Jae, K. K.; Yong, J. S.; Ghanshyam, S. C.; Jou- Hyeon, A.; Ki-Won, K. J. Power Sources 2009, 189, 59.  
(8) Hyeokjo, G.; Dong, H. S.; Sung,W. K.; Jongsoon, K.; Kisuk, K. Adv. Funct. Mater. 2009, 19, 3285.  
(9) Atsuo, Y.; Yuki, T.; Hiroshi, K.; Noriyuki, S.; Ryoji, K.; Keiji, I.; Masao, Y.; Takashi, K. Chem. Mater. 2006, 18, 804.  
(10) Surendra, K. M.; Judith, G.; Ortal, H.; Ella, Z.; Thierry, D. James, H. M.; Ivan, E.; Andreas, K.; Boris, M. Angew. Chem. Int. Edit. 2009, 48, 8559.  
(11) Young, P.; Jongsoon, K.; Hyeokjo, G.; Dong, S.; Sung, K.; Kisuk, K. Chem. Mater. 2010, 22, 2573.  
(12) Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123.  
(13) Wang, G. X.; Steve, B.; Yao, J.; Ahn, J. H.; Dou, S. X.; Liu, H. K. Electrochem. Solid-State Lett. 2004, 7, A503.
(14) Ni, J. F.; Zhou, H. H.; Chen, J. T.; Su, G. Y. Acta Phys. -Chim. Sin. 2004, 20, 582. [倪江峰, 周恒辉, 陈继涛, 苏光耀. 物理化学学报, 2004, 20, 582.]
(15) Wang, D. Y.; Li, H.; Shi, S. Q.; Huang, X. J.; Chen, L. Q. Electrochim. Acta 2005, 50, 2955.  
(16) Wua, S. H.; Chen, M. S.;Wu, Y. P. J. Power Sources 2009, 189, 440.  
(17) Tomoyuki, S.; Shigeto, O.; Takayuki, D.; Yamaki, J. Electrochim. Acta 2009, 54, 3145.  
(18) Tong, D. G.; Luo, F. L.; Chu,W.; Li, Y. L.;Wu, P. Mater. Chem. Phys. 2010, 124, 1.  
(19) Yang, G.; Ni, H.; Liu, H. D.; Gao, P.; Ji, H. M.; Roya, S.; Pintob, J.; Jiang, X. F. J. Power Sources 2011, 196, 4747.  
(20) Ma, J.; Li, B. H.; Du, H. D.; Xu, C. J.; Kang, F. Y.; J. Electrochem. Soc. 2011, 158, A26.
(21) Yang, M. R.; Ke,W. H. J. Electrochem. Soc. 2008, 155, A729.
(22) Shin, H. C.; Park, S. B.; Jang, H.; Chung, K. Y.; Cho, B.W. Electrochim. Acta 2008, 53, 7964.
(23) Ma, J.; Li, B. H.; Du, H. D.; Xu, C. J.; Kang, F. Y. Electrochim. Acta 2011, 56, 7385.  
(24) Wang, Z. L.; Sun, S. R.; Xia, D. G.; Chu,W. S.; Zhang, S.;Wu, Z. Y. J. Phys. Chem. C 2008, 112, 17450.  
(25) Shin, H. C.; Cho,W. I.; Jang, H. J. Power Sources 2006, 159, 1383.  
(26) Xia, Y.; Yoshio, M.; Noguchi, H. Electrochim. Acta 2006, 52, 240.  
(27) Li, Y. D.; Zhao, S. X.; Nan, C.W.; Li, B. H. J. Alloy. Compd. 2011, 509, 957.  
(28) Kim, D. H.; Kim, J. K. J. Phys. Chem. Solid 2007, 68, 734.  
(29) Nonglak, M.; Yu, H. K.; Scott, A. S.; Chiang, Y. M. Adv. Funct. Mater. 2009, 19, 1060.  
(30) Xu, J.; Chen, G. Physica B 2010, 405, 803.  
[1] YAN Hui-Jun, LI Biao, JIANG Ning, XIA Ding-Guo. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1781-1788.
[2] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[3] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[4] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[5] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[6] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[7] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[8] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[9] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[10] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[11] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(1): 211-241.
[12] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[13] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.
[14] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1866-1879.
[15] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.