Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (02): 373-380    DOI: 10.3866/PKU.WHXB201112021
Electropolymerization and Characterization of Fast Charge-Discharge PPy/F-SWNTs Composite Materials
ZHU Jian-Bo1,2, XU You-Long1,2, WANG Jie1,2, WANG Jing-Ping1,2
1. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi'an Jiaotong University, Xi'an 71004 9. P.R. China;
2. International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 71004 9. P.R. China
Download:   PDF(3650KB) Export: BibTeX | EndNote (RIS)      

Abstract  Fast charge-discharge composite materials of conducting polypyrrole and functionalized single-walled carbon nanotubes doped with p-toluenesulfonate (PPy-TOS/F-SWNTs) were prepared by galvanostatic electrochemical polymerization. Scanning Electron Microscope (SEM) images showed that the composite had a nano-rod structure with a diameter of about 70 nm. Nitrogen adsorption-desorption experinents were used to characterize the specific surface area (BET) (up to 12.64 m2·g-1) and pore sizes of the composite. Electrochemical properties of the composites were studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge (GC) measurements. The specific capacitance of this composite is about 211 F·g-1 (energy density: 18.7 Wh·kg-1) at a current density of 2.5 A·g-1, and 141.8 F·g-1 (energy density: 12.6 Wh·kg-1) at large current density of 80 A·g-1. The composite had excellent cyclability with a capacity retention of about 95.2% after 10000 cycles at a current density of 10 A·g-1. All these results indicate that this new composite material has a very rapidly charge-discharge ability

Key wordsSupercapacitor      Electropolymerization      Polypyrrole      SWNTs     
Received: 26 September 2011      Published: 02 December 2011
MSC2000:  O646  

The project was supported by the National High-Tech Research and Development Program of China (863) (2007AA03Z249) and National Natural Science Foundation of China (20804030).

Corresponding Authors: XU You-Long     E-mail:
Cite this article:

ZHU Jian-Bo, XU You-Long, WANG Jie, WANG Jing-Ping. Electropolymerization and Characterization of Fast Charge-Discharge PPy/F-SWNTs Composite Materials. Acta Phys. Chim. Sin., 2012, 28(02): 373-380.

URL:     OR

(1) Simon, P.; Gogotsi, Y. Nature Materials 2008, 7, 845.  
(2) Winter, M.; Brodd, R. J. Chemical Reviews 2004, 104, 4245.  
(3) Kalaji, M.; Murphy, P. J.;Williams, G. O. Synthetic Metals 1999, 102, 1360.  
(4) Bredas, J. L.; Street, G. B. Accounts of Chemical Research 1985, 18, 309.  
(5) Iroh, J. O.; Levine, K. Journal of Power Sources 2003, 117, 267.  
(6) Ingram, M. D.; Staesche, H.; Ryder, K. S. Solid State Ionics 2004, 169, 51.  
(7) Mastragostino, M.; Arbizzani, C.; Soavi, F. Solid State Ionics 2002, 148, 493.  
(8) Il Cho, S.; Lee, S. B. Accounts of Chemical Research 2008, 41, 699.  
(9) Groenendaal, B. L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Advanced Materials 2000, 12, 481.  
(10) Burke, A. Journal of Power Sources 2000, 91, 37.  
(11) Rudge, A.; Raistrick, I.; Gottesfeld, S.; Ferraris, J. P. Electrochimica Acta 1994, 39, 273.  
(12) Zhang, L. L.; Zhao, S. Y.; Tian, X. N.; Zhao, X. S. Langmuir 2010, 26, 17624.  
(13) Biswas, S.; Drzal, L. T. Chemistry of Materials 2010, 22, 5667.  
(14) Frackowiak, E.; Khomenko, V.; Jurewicz, K.; Lota, K.; Beguin, F. Journal of Power Sources 2006, 153, 413.  
(15) Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253.  
(16) Iijima, S.; Yudasaka, M.; Nihey, F. Nec Technical Journal 2007, 2, 52.
(17) Lee, S.W.; Kim, B. S.; Chen, S.; Shao-Horn, Y.; Hammond, P. T. Journal of the American Chemical Society 2009, 131, 671.  
(18) Zhang, L. L.; Zhao, X. S. Chemical Society Reviews 2009, 38, 2520.  
(19) Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green, M. L. H. Nature 1994, 372, 159.  
(20) Chen, Z. Y.; Kobashi, K.; Rauwald, U.; Booker, R.; Fan, H.; Hwang,W. F.; Tour, J. M. Journal of the American Chemical Society 2006, 128, 10568.  
(21) Wang, J.; Xu, Y. L.; Chen, X.; Sun, X. F. Composites Science and Technology 2007, 67, 2981.  
(22) Wang, J.; Xu, Y. L.; Sun, X. F.; Xiao, F.; Mao, S. C. Acta Phys.-Chim. Sin. 2007, 23, 877. [王杰, 徐友龙, 孙孝飞, 毛胜春. 物理化学学报, 2007, 23, 877.]
(23) Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Nano Letters 2010, 10, 751.  
(24) Montesa, I.; Munoz, E.; Benito, A. M.; Maser,W. K.; Martinez, M. T. Journal of Nanoscience and Nanotechnology 2007, 7, 3473.  
(25) Li, Y. F. Journal of Electroanalytical Chemistry 1997, 433, 181.  
(26) Li, S.; Qiu, Y. B.; Guo, X. P. Acta Phys.-Chim. Sin. 2010, 26, 601. [李胜, 岳于兵, 郭兴蓬. 物理化学学报, 2010, 26, 601.]
(27) Naoi, K.; Simon, P. Electrochemical Society Interface 2008, 34.
[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[4] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[5] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[6] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[7] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[8] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[9] HU Bin, WANG Pei, Lü Xiao-Jing, WANG Ping-Jing, DAI Yu-Yu, OUYANG Mi. Effects of Monomer Molar Ratio on the Electrochemical and Electrochromic Properties of Copolymers[J]. Acta Phys. Chim. Sin., 2016, 32(4): 961-968.
[10] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[11] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. Chim. Sin., 2016, 32(2): 474-480.
[12] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 493-502.
[13] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 481-492.
[14] LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Phys. Chim. Sin., 2015, 31(4): 676-684.
[15] LI Yang, XIE Hua-Qing, LI Jing. Hydrothermal Synthesis of Al-Doped α-MnO2 Nanotubes and Their Electrochemical Performance for Supercapacitors[J]. Acta Phys. Chim. Sin., 2015, 31(4): 693-699.