Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (02): 349-354    DOI: 10.3866/PKU.WHXB201112052
ELECTROCHEMISTRY AND NEW ENERGY     
High Rate Capability and Cycling Stability of Li1.07Mn1.93O4 Nanoflakes Synthesized via Gel-Combustion Method
MAO Jing, DAI Ke-Hua, ZHAI Yu-Chun
School of Materials and Metallurgy, Northeastern University, Shenyang 110004, P. R. China
Download:   PDF(716KB) Export: BibTeX | EndNote (RIS)      

Abstract  Li1.07Mn1.93O4 nanoflakes were synthesized by a gel-combustion method using polyvinylpyrrolidone (PVP) as the polymer chelating agent and fuel. Thermogravimetric and differential thermal analyses (TG/DTA) were used to investigate the combustion process of the gel precursor. X-ray diffraction (XRD) analysis indicated that the as-prepared Li1.07Mn1.93O4 was a pure, highly crystalline phase. Scanning electron microscopy (SEM) results showed that most of the secondary particles were nanoflakes, about 100 nm in thickness, and the primary particle of the nanoflakes was about 100 nm in size. Charge and discharge tests suggested that the Li1.07Mn1.93O4 nanoflakes had excellent rate capability and good cycling stability. The initial discharge capacity was 115.4 mAh·g-1 at a rate of 0.5C (1C=120 mAh·g-1) and the capacity was maintained at 105.3 mAh·g-1 at the high discharge rate of 40C. When cycling at 10C, the material retained 81% of its initial capacity after 850 cycles. Electrochemical impedance spectroscopy (EIS) tests indicated that the charge-transfer resistance (Rct) of the Li1.07Mn1.93O4 nanoflakes was much less than that of commercial Li1.07Mn1.93O4.

Key wordsLithium ion battery      Lithium manganese oxide      Combustion synthesis      Rate capability      Cycling stability     
Received: 18 July 2011      Published: 05 December 2011
MSC2000:  O646  
Corresponding Authors: DAI Ke-Hua, ZHAI Yu-Chun     E-mail: daikh@smm.neu.edu.cn; zhaiyc@smm.neu.edu.cn
Cite this article:

MAO Jing, DAI Ke-Hua, ZHAI Yu-Chun. High Rate Capability and Cycling Stability of Li1.07Mn1.93O4 Nanoflakes Synthesized via Gel-Combustion Method. Acta Phys. Chim. Sin., 2012, 28(02): 349-354.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201112052     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I02/349

(1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  
(2) Du Pasquier, A.; Huang, C. C.; Spitler, T. Journal of Power Sources 2009, 186, 508.  
(3) Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. S. Nano Letters 2009, 9, 1045.  
(4) Lanz, M.; Kormann, C.; Steininger, H.; Heil, G.; Haas, O.; Novak, P. Journal of the Electrochemical Society 2000, 147, 3997.  
(5) Lee, J.W.; Park, S. M.; Kim, H. J. Electrochemistry Communications 2009, 11, 1101.  
(6) Lee, K. S.; Myung, S. T.; Bang, H.; Amine, K.; Kim, D.W.; Sun, Y. K. Journal of Power Sources 2009, 189, 494.  
(7) Lim, S.; Cho, J. Electrochemistry Communications 2008, 10, 1478.  
(8) Ma, S. B.; Nam, K.W.; Yoon,W. S.; Bak, S. M.; Yang, X. Q.; Cho, B.W.; Kim, K. B. Electrochemistry Communications 2009, 11, 1575.  
(9) Park, S. C.; Han, Y. S.; Kang, Y. S.; Lee, P. S.; Ahn, S.; Lee, H. M.; Lee, J. Y. Journal of the Electrochemical Society 2001, 148, A680.
(10) Park, S. C.; Kim, Y. M.; Kang, Y. M.; Kim, K. T.; Lee, P. S.; Lee, J. Y. Journal of Power Sources 2001, 103, 86.  
(11) Wang, X. Q.; Tanaike, O.; Kodama, M.; Hatori, H. Journal of Power Sources 2007, 168, 282.  
(12) Yue, H.; Huang, X.; Lv, D.; Yang, Y. Electrochimica Acta 2009, 54, 5363.  
(13) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk,W. Nature Materials 2005, 4, 366.  
(14) Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angewandte Chemie-International Edition 2008, 47, 2930.  
(15) Chen, Z. Y.; Zhu, H. L.; Ji, S.; Linkov, V.; Zhang, J. L.; Zhu,W. Journal of Power Sources 2009, 189, 507.  
(16) Kamarulzaman, N.; Yusoff, R.; Kamarudin, N.; Shaari, N. H.; Aziz, N. A. A.; Bustam, M. A.; Blagojevic, N.; Elcombe, M.; Blackford, M.; Avdeev, M.; Arof, A. K. Journal of Power Sources 2009, 188, 274.  
(17) Ye, S. H.; Lv, J. Y.; Gao, X. P.;Wu, F.; Song, D. Y. Electrochimica Acta 2004, 49, 1623.
(18) Caballero, A.; Cruz, M.; Hernán, L.; Melero, M.; Morales, J.; Castellón, E. R. Journal of Power Sources 2005, 150, 192.  
(19) Huang, Y. D.; Jiang, R. R.; Bao, S. J.; Dong, Z. F.; Cao, Y. L.; Jia, D. Z.; Guo, Z. P. Journal of Solid State Electrochemistry 2009, 13, 799.  
(20) Shaju, K. M.; Bruce, P. G. Chemistry of Materials 2008, 20, 5557.  
(21) Vivekanandhan, S.; Venkateswarlu, M.; Satyanarayana, N. Journal of Alloys and Compounds 2007, 441, 284.  
(22) Patey, T. J.; Buchel, R.; Nakayama, M.; Novak, P. Physical Chemistry Chemical Physics 2009, 11, 3756.
(23) Patey, T. J.; Buchel, R.; Ng, S. H.; Krumeich, F.; Pratsinis, S. E.; Novak, P. Journal of Power Sources 2009, 189, 149.  
(24) Cabana, J.; Valdes-Solis, T.; Palacin, M. R.; Oro-Sole, J.; Fuertes, A.; Marban, G.; Fuertes, A. B. Journal of Power Sources 2007, 166, 492.  
(25) Jiao, F.; Bao, J. L.; Hill, A. H.; Bruce, P. G. Angewandte Chemie-International Edition 2008, 47, 9711.  
(26) Luo, J. Y.;Wang, Y. G.; Xiong, H. M.; Xia, Y. Y. Chemistry of Materials 2007, 19, 4791.  
(27) Katakura, K.;Wada, K.; Kajiki, Y.; Yamamoto, A.; Ogumi, Z. Journal of Power Sources 2009, 189, 240.  
(28) Luo, J. Y.; Cheng, L.; Xia, Y. Y. Electrochemistry Communications 2007, 9, 1404.  
(29) Uchiyama, H.; Hosono, E.; Zhou, H. S.; Imai, H. Journal of Materials Chemistry 2009, 19, 4012.  
(30) Fang, H. S.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S. Journal of Power Sources 2008, 184, 494.  
(31) Jiang, C. H.; Dou, S. X.; Liu, H. K.; Ichihara, M.; Zhou, H. S. Journal of Power Sources 2007, 172, 410.  
(32) Kim, D. K.; Muralidharan, P.; Lee, H.W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H.; Huggins, R. A.; Cui, Y. Nano Letters 2008, 8, 3948.  
(33) Fey, G.; Cho, Y.; Kumar, T. Materials Chemistry and Physics 2006, 99, 451.  
(34) Liu, Q. G.; Yang,W. S.; Zhang, G.; Xie, J. Y.; Yang, L. L. Journal of Power Sources 1999, 81, 412.  
(35) Fey, G. T. K.; Cho, Y. D.; Kumar, T. P. Materials Chemistry and Physics 2004, 87, 275.  
(36) Kalyani, P.; Kalaiselvi, N.; Muniyandi, N. Journal of Power Sources 2002, 111, 232.  
(37) Park, H. B.; Kim, J.; Lee, C.W. Journal of Power Sources 2001, 92, 124.  
(38) Subramania, A.; Angayarkanni, N.; Vasudevan, T. Materials Chemistry and Physics 2007, 102, 19.  
(39) Wu, X. M.; Li, X. H.; Xiao, Z. B.; Liu, J.; Yan,W. B.; Ma, M. Y. Materials Chemistry and Physics 2004, 84, 182.  
(40) Zhang, Y.; Shin, H. C.; Dong, J.; Liu, M. Solid State Ionics 2004, 171, 25.  
(41) Amarilla, J. M.; Petrov, K.; Pico, F.; Avdeev, G.; Rojo, J. M.; Rojas, R. M. Journal of Power Sources 2009, 191, 591.  
(42) Kovacheva, D.; Gadjov, H.; Petrov, K.; Mandal, S.; Lazarraga, M. G.; Pascual, L.; Amarilla, J. M.; Rojas, R. M.; Herrero, P.; Rojo, J. M. Journal of Materials Chemistry 2002, 12, 1184.  
(43) Zhang, J. H.; Liu, J. B.;Wang, S. Z.; Zhan, P.;Wang, Z. L.; Ming, N. B. Adv. Funct. Mater. 2004, 14, 1089.  
(44) Fu, Y. S.; Chen, L. J.; Liao, J. D.; Chuang, Y. J.; Hsu, K. C.; Chiang, Y. F. J. Appl. Polym. Sci. 2011, 121, 154.  
(45) Kanamura, K.; Rho, Y. H. J. Electroanal. Chem. 2003, 559, 69.  
(46) Kanamura, K.; Rho, Y. H. J. Solid State Chem. 2004, 177, 2094.  
(47) Kanamura, K.; Rho, Y. H. Journal of Power Sources 2006, 158, 1436.  
(48) Kanamura, K.; Rho, Y. H.; Umegaki, T. Chem. Lett. 2001, 1322.
(49) Dai, K. H.; Mao, J.; Zhai, Y. C. Acta Phys. -Chim. Sin. 2010, 26, 2130. [代克化, 毛景, 翟玉春. 物理化学学报, 2010, 26, 2130.]
(50) Hirose, S.; Kodera, T.; Ogihara, T. Journal of Alloys and Compounds 2010, 506, 883.  
(51) Peng, Z. D.; Jiang, Q. L.; Du, K.;Wang,W. G.; Hu, G. R.; Liu, Y. X. Journal of Alloys and Compounds 2010, 493, 640.  
[1] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2261-2267.
[2] LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2293-2300.
[3] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[4] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. Chim. Sin., 2016, 32(2): 573-580.
[5] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2737-2744.
[6] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1437-1451.
[7] ZENG Yu-Qun, GUO Yong-Sheng, WU Bing-Bin, HONG Xiang, WU Kai ZHONG, Kai-Fu. Synthesis and Electrochemical Performance of Plastic Crystal Compound-Based Ionic Liquid[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1351-1358.
[8] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Phys. Chim. Sin., 2015, 31(2): 268-276.
[9] LIU Jian-Hua, LIU Bin-Hong, LI Zhou-Peng. Fe3O4/Graphene Composites with a Porous 3D Network Structure Synthesized through Self-Assembly under Electrostatic Interactions as Anode Materials of High-Performance Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1650-1658.
[10] XUE Qing-Rui, LI Jian-Ling, XU Guo-Feng, HOU Peng-Fei, YAN Gang, DAI Yu, WANG Xin-Dong, GAO Fei. Effects of Surface Modification with Ag/C on Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1667-1673.
[11] ZHU Zhi, QI Lu, LI Wei, LIAO Xi-Ying. Preparation and Electrochemical Performance of 5 V LiNi0.5Mn1.5O4 Cathode Material by the Composite Co-Precipitation Method for High Energy/High Power Lithium Ion Secondary Batteries[J]. Acta Phys. Chim. Sin., 2014, 30(4): 669-676.
[12] WU Yue, LIU Xing-Quan, ZHANG Zheng, ZHAO Hong-Yuan. Preparation and Characterization of M(Ⅱ) and M(Ⅳ) Iso-Molar Co-Doped LiMn1.9Mg0.05Ti0.05O4 Cathode Materials for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2014, 30(12): 2283-2290.
[13] ZHONG Yan-Jun, LI Jun-Tao, WU Zhen-Guo, ZHONG Ben-He, GUO Xiao-Dong, HUANG Ling, SUN Shi-Gang. Synthesis of Na2MnPO4F/C with Different Carbon Sources and Their Performances as Cathode for Lithium Ion Battery[J]. Acta Phys. Chim. Sin., 2013, 29(09): 1989-1997.
[14] MARí B., CEMBRERO-COCA P., SINGH K. C., KAUSHIK R. D., OM Hari. Preparation and Luminescence Properties of MZrO3:Eu3+,A (M=Ca2+, Ba2+; A=Li+, Na+, K+) Phosphors with Perovskite Structure[J]. Acta Phys. Chim. Sin., 2013, 29(06): 1357-1362.
[15] LIU Nian-Ping, SHEN Jun, GUAN Da-Yong, LIU Dong, ZHOU Xiao-Wei, LI Ya-Jie. Effect of Carbon Aerogel Activation on Electrode Lithium Insertion Performance[J]. Acta Phys. Chim. Sin., 2013, 29(05): 966-972.