Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (02): 457-464    DOI: 10.3866/PKU.WHXB201112081
Photocatalytic Property and Reaction Mechanism of (Ni-Mo)/TiO2 Nano Thin Film Evaluated with Congo Red
LI Ai-Chang, LI Gui-Hua, ZHENG Yan, FENG Ling-Ling, ZHENG Yan-Jun
Faculty of Chemistry and Material Science, Langfang Teachers College, Langfang 065000, Hebei Province, P. R. China
Download:   PDF(873KB) Export: BibTeX | EndNote (RIS)      

Abstract  (Ni-Mo)/TiO2 composite thin films were prepared by composite electroplating at a constant current. The surface morphology, phase structure, and optical characteristics of the thin films were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectrum, and ultravioletvisible diffuse reflectance spectroscopy (UV-Vis DRS), respectively. The photocatalytic properties of the (Ni-Mo)/TiO2 composite thin films were evaluated with Congo red as a model compound. The effects of pH of the Congo red aqueous solution on the photocatalytic activity of the (Ni-Mo)/TiO2 thin films were investigated. Using cyclic voltammetry technique and a method of adding active species scavengers to the solution, the mechanisms of photocatalytic degradation of the films were explored. The results show that the (Ni-Mo)/TiO2 films consist of crystalline grains of TiO2 in the size range of 50-100 nm and nanocrystalline grains of Ni-Mo in solid solution. The (Ni-Mo)/TiO2 films are photocatalytically more active than a TiO2/ITO (indium tin oxide) reference film. Under halogen light irradiation, the photocatalytic degradation rate of the (Ni-Mo)/TiO2 films is 2.43 times as much as that of a porous TiO2 (Degussa P25)/ ITO film. The improvement in photocatalytic activity for the composite films could be mainly attributed to the heterojunction of (Ni-Mo)/TiO2, the electronic passageway of Ni-Mo in the composite films, and the catalysis of Ni-Mo in the composite film for the reaction of excited electrons with dissolved oxygen. The photocatalytic reaction mechanisms of the (Ni-Mo)/TiO2 films evaluated with Congo red are given under visible and UV light irradiation, respectively.

Key wordsPhotocatalysis      (Ni-Mo)/TiO2 nanofilm      Composite electroplating      Cogon red      Reaction mechanism     
Received: 16 September 2011      Published: 08 December 2011
MSC2000:  O643  

The project was supported by the Science and Technology Project of Hebei Province, China (11276732).

Corresponding Authors: LI Ai-Chang     E-mail:
Cite this article:

LI Ai-Chang, LI Gui-Hua, ZHENG Yan, FENG Ling-Ling, ZHENG Yan-Jun. Photocatalytic Property and Reaction Mechanism of (Ni-Mo)/TiO2 Nano Thin Film Evaluated with Congo Red. Acta Phys. -Chim. Sin., 2012, 28(02): 457-464.

URL:     OR

(1) Antoniadou, M.; Lianos, P. Catal. Today 2009, 144, 166.  
(2) Szabo-Bardos, E.; Zsilak, Z.; Horvath, O. Prog. Colloid Polym. Sci. 2008, 135, 21.
(3) María-José, L. M.; Rafael, V. G.; José, A. Catal. Today 2005, 101, 307.  
(4) Xu, Y. M. Prog. Chem. 2009, 21 (2/3): 524. [许宜铭. 化学进展, 2009, 21 (2/3), 524.]
(5) Esquivel, K.; Arriaga, L. G.; Rodriguez, F. J.; Martinez, L.; Godinez, L. A. Water Res. 2009, 43, 3593.  
(6) Hufschmidt, D.; Bahnemann, D.; Testa, J. J. J. Photochem. Photobio. A-Chem. 2002, 148, 223.  
(7) Ren, X. C.; Shi, Z. F.; Kong, L. R. Chin. J. Catal. 2006, 27 (9), 815. [任学昌, 史载峰, 孔令仁. 催化学报, 2006, 27 (9), 815.]
(8) Hongfan, G.; Marianna, K.; Mikko, H.; Markku, L. Appl. Catal. B-Environ. 2010, 95 (3-4), 358.
(9) Ramírez-Meneses, E.; García-Murillo, A.; Carrillo-Romo, F. D. J.; García-Alamilla, R. Sol-Gel Sci. Technol. 2009, 52, 267.  
(10) Hosseini, Z.; Taghavinia, N.; Sharifi, N.; Chavoshi, M.; Rahman, M. J. Phys. Chem. C 2008, 121 (47),18686.
(11) Peralta-Hernández, J. M.; Manríquez, J.; Meas-Vong, Y. J. Hazard. Mater. 2007, 147, 588.  
(12) Liu, S. Y.;Wu, L. D.; Zhao, Z. X.; Feng, Q. G.;Wang, X.; Yang, C. D. J. Inorg. Mater. 2009, 24 (5), 902. [刘少友, 吴林东, 赵钟兴, 冯庆革, 王翔, 杨朝德. 无机材料学报, 2009, 24 (5), 902.]
(13) Fan, C. L.; Priron D. L.; Sieb, A.; Paradis, P. J. Electrochem Soc. 1994, 141 (2), 382.
(14) Mei, Y.; Jia, Z. B.; Qiu, L.; Cao, J. L.; Zhang, Y. F.;Wei, Y. Acta Energiae Solaris Sinica 2002, 23 (2), 199. [梅燕, 贾振斌, 邱丽, 曹江林, 张艳峰, 魏雨. 太阳能学报, 2002, 23 (2), 199.]
(15) Wu, J. M.; Huang, B.; Zeng, Y. H. Thin Solid Films 2006, 497 (1-2), 292.
(16) Paula, P.; Liana, A.; Teodor, V. U. P. B. Sci. Bull. Series B 2010, 72 (4), 11.
(17) Fan, X. Metal X-Ray Diffractometry; China Mechine Press: Beijing, 1996; p45. [范雄. 金属X射线衍射学. 北京: 机械工业出版社, 1996: 45.]
(18) Wang, J. Q.; Xin, B. F.; Yu, H. T.; Xie, Y. T.; Zhao, B.; Fu, H. G. Chem. J. Chin. Univ. 2003, 24, 1237. [王建强, 辛柏福, 于海涛, 谢玉涛, 赵冰, 付宏刚. 高等学校化学学报, 2003, 24, 1237.]
(19) Li, X. Z.; He, C.; Graham, N.; Xiong, Y. J. Appl. Electrochem. 2005, 35, 741.  
(20) Zhang, Y. R.;Wang, J.; Ke, Y. Q. J. Hazard. Mater. 2010, 177 (1-3), 750.
(21) Nosaka, Y.; Daimon, T.; Nosaka, A. T. Phys. Chem. Chem. Phys. 2004, 6, 2917.
(22) You, X. F.; Chen, F.; Zhang, J. L.; Huang, J. Z.; Zhang, L. Z. Chin. J. Catal. 2006, 27 (3), 270. [尤先锋, 陈锋, 张金龙, 黄家桢, 张利中. 催化学报, 2006, 27 (3), 270.]
(23) Han, S. T.; Xi, H. L.; Shi, R. X.; Fu, X. Z.;Wang, X. X. Chin. J. Chem. Phys. 2003, 16 (5), 339. [韩世同, 习海玲, 史瑞雪, 付贤智, 王绪绪. 化学物理学报, 2003, 16 (5), 339.]
(24) Yang, J.; Dai, J.; Zhao, J. C.; Miu, J. Chin. Sci. Bull. 2009, 54 (15), 2196. [杨娟, 戴俊, 赵进才, 缪娟. 科学通报, 2009, 54 (15), 2196.]
(25) Ji, H.W.; Ma,W. H.; Hang, Y. P.; Zhao, J. C.;Wang, Z. P. Chin. Sci. Bull. 2003, 48 (21), 2199. [籍宏伟, 马万红, 黄应平, 赵进才, 王正平. 科学通报, 2003, 48 (21), 2199.]
[1] Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958.
[2] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[3] Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162.
[4] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[5] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[6] Zi-Min WANG,Mo ZHENG,Yong-Bing XIE,Xiao-Xia LI,Ming ZENG,Hong-Bin CAO,Li GUO. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1399-1410.
[7] Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107.
[8] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[9] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[10] . Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282.
[11] Dong ZHENG,Bei-Jing ZHONG,Tong YAO. Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2438-2445.
[12] Xiao-Fang BAI,Wei CHEN,Bai-Yin WANG,Guang-Hui FENG,Wei WEI,Zheng JIAO,Yu-Han SUN. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2388-2403.
[13] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[14] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[15] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241.