Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (02): 450-456    DOI: 10.3866/PKU.WHXB201112141
CATALYSIS AND SURFACE SCIENCE     
Hydrogen Evolution by Photocatalytic Steam Reforming of Methane over Pt/TiO2
LI Cao-Long1,2, CHEN Wei1, YUAN Jian1, SHANGGUAN Wen-Feng1
1. Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;
2. Department of Inorganic Chemistry of Basic Courses, China Pharmaceutical University, Nanjing 211169, P. R. China
Download:   PDF(633KB) Export: BibTeX | EndNote (RIS)      

Abstract  Photocatalytic reaction of CH4 gas with H2O vapor over Pt/TiO2 at around room temperature (ca 323 K) was examined in a flow reactor. H2 and CO2 were the main products, and only trace amounts of C2H6, C2H4, and CO were observed. After an induction period, the molar ratio of H2 to CO2 in the outlet gas became close to 1.7. Thus, the main reaction is suggested to be: CH4+2H2O(g)→4H2+CO2, which can be referred to as photocatalytic steam reforming of methane (PSRM). The reaction would be promoted by photoexcited electrons and holes, which were generated by band gap photoexcitation of the TiO2 photocatalyst. In addition, the effects of reaction parameters, such as molar ratio of CH4 to H2O, total flow rate, noble-metal cocatalysts, wavelength of irradiating light, amounts of catalysts, and recycling efficiency of the p-Pt/TiO2 photocatalyst via light deposition of preformed Pt nanoparticles on P25, on the hydrogen evolution were investigated.

Key wordsPhotocatalytic reforming      Hydrogen      CH4      Steam      TiO2     
Received: 05 August 2011      Published: 14 December 2011
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (20973110) and National Key Basic Research Program of China (973) (2009CB220000).

Corresponding Authors: SHANGGUAN Wen-Feng     E-mail: shangguan@sjtu.edu.cn
Cite this article:

LI Cao-Long, CHEN Wei, YUAN Jian, SHANGGUAN Wen-Feng. Hydrogen Evolution by Photocatalytic Steam Reforming of Methane over Pt/TiO2. Acta Phys. Chim. Sin., 2012, 28(02): 450-456.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201112141     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I02/450

(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37.  
(2) Sakata, T.; Kawai, T. Nature 1979, 282, 283.  
(3) Li, Y. X.; Gao, D.; Peng, S. Q.; Lu, G. X.; Li, S. B. Int. J. Hydrog. Energy 2011, 36, 4291.  
(4) Luo, N. J.; Jiang, Z.; Shi, H. H.; Cai, F. H.; Xiao, T. C.; Edwards, P. P. Int. J. Hydrog. Energy 2009, 34, 125.  
(5) Chiarello, G. L.; Forni, L.; Selli, E. Catal. Today 2009, 144, 69.  
(6) Strataki, N.; Bekiari, V.; Kondarides, D. I.; Lianos, P. Appl. Catal. B 2007, 77, 184.  
(7) Sato, S.; White, J. M. Chem. Phys. Lett. 1980, 70, 131.  
(8) Sato, S.; White, J. M. J. Catal. 1981, 69, 128.  
(9) Bowker, M.; Philip, R. D.; Al-Mazroai, L. S. Catal. Lett. 2009, 128, 253.  
(10) Geert, L.; Anne, B. T.; Luc, D. B.;Willy, V.; Birgitte, K. A. En viron. Sci. Technol. 2004, 38, 3418.  
(11) Shimura, K.; Yoshida, H. Energy Environ. Sci. 2010, 3, 615.  
(12) Yoshida, H.; Hirao, K.; Nishimoto, J.; Shimura, K.; Kato, S.; Itoh, H.; Hattori, T. J. Phys. Chem. C 2008, 112, 5542.  
(13) Shimura, K.; Kato, S.; Yoshida, T.; Itoh, H.; Hattori, T.; Yoshida, H. J. Phys. Chem. C 2010, 114, 3493.  
(14) Yoshida, H.; Kato, S.; Hirao, K.; Nishimoto, J. I.; Hattori, T. Chem. Lett. 2007, 36, 430.  
(15) Shimura, K. Yoshida, T.; Yoshida, H. J. Phys. Chem. C 2010, 114, 11466.  
(16) Yuliati, L.; Yoshida, H. Chem. Sco. Rev. 2008, 37, 1592.  
(17) Yuliati, L.; Hamajima, T.; Hattori, T.; Yoshida, H. J. Phys. Chem. C 2008, 112, 7223.  
(18) Yuliati, L.; Hattori, T.; Itoh, H.; Yoshida, H. J. Catal. 2008, 257, 396.  
(19) Fu, X. L.; Long, J. L.;Wang, X. X.; Fu, X. Z. Int. J. Hydrog. Energy 2008, 33, 6484.  
[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] JIANG Xiaoyu, WU Wei, MO Yirong. Strength of Intramolecular Hydrogen Bonds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 278-285.
[3] NING Hong-Yan, YANG Qi-Lei, YANG Xiao, LI Ying-Xia, SONG Zhao-Yu, LU Yi-Ren, ZHANG Li-Hong, LIU Yuan. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1865-1874.
[4] GUO Yun-Peng, FENG Jie, LI Wen-Ying. Effect of Ni Doping on Electron Transfer in Ni/MgO Catalysts[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1796-1802.
[5] WANG Xin-Lei, MA Kui, GUO Li-Hong, DING Tong, CHENG Qing-Peng, TIAN Ye, LI Xin-Gang. Catalytic Performance for Hydrogen Production through Steam Reforming of Dimethyl Ether over Silica Supported Copper Catalysts Synthesized by Ammonia Evaporation Method[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1699-1708.
[6] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[7] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[8] WEI Chun-Lei, GAO Jie, WANG Kai, DONG Mei, FAN Wei-Bin, QIN Zhang-Feng, WANG Jian-Guo. Effect of Hydrogen pre-treatment on the catalytic properties of Zn/HZSM-5 zeolite for ethylene aromatization reaction[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1483-1491.
[9] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[10] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[11] WU Guang-Xin, PENG Wang-Jun, ZHANG Jie-Yu. Statistic Thermodynamic Model of Hydrogen Absorption on Metal Powders[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1108-1113.
[12] SUN Shuai-Qi, YI Yan-Hui, WANG Li, ZHANG Jia-Liang, GUO Hong-Chen. Preparation and Performance of Supported Bimetallic Catalysts for Hydrogen Production from Ammonia Decomposition by Plasma Catalysis[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1123-1129.
[13] LIAN Chao, ZHANG Kai, WANG Yuan. Catalytic Properties of Platinum Nanoclusters Supported on Iron Oxides for the Solvent-Free Hydrogenation of Halonitrobenzene[J]. Acta Phys. Chim. Sin., 2017, 33(5): 984-992.
[14] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[15] YANG Kun, YAO Qi-Lu, LU Zhang-Hui, KANG Zhi-Bing, CHEN Xiang-Shu. Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane[J]. Acta Phys. Chim. Sin., 2017, 33(5): 993-1000.