Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (03): 591-595    DOI: 10.3866/PKU.WHXB201112161
Photovoltaic Performance of Dye-Sensitized Solar Cells Based on Al-Doped TiO2 Thin Films
LIU Qiu-Ping1,2,3, HUANG Hui-Juan4, ZHOU Yang1, DUAN Yan-Dong3, SUN Qing-Wen3, LIN Yuan3
1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China;
2. College of Software, Jiangxi University of Science and Technology, Nanchang 330013, P. R. China;
3. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;
4. Jiujiang Vocational & Technical College, Jiujing 332000, Jiangxi Province, P. R. China
Download:   PDF(842KB) Export: BibTeX | EndNote (RIS)      

Abstract  Al-doped TiO2 thin films were synthesized by the hydrothermal method. To prepare a working electrode, a TiO2 or AlTiO2 slurry was coated onto a fluorine-doped tin oxide glass substrate by the doctor blade method and the coated substrate was sintered at 450 ° C. TiO2 and Al-doped TiO2 films were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and tested by the dye-sensitized solar cell (DSSCs) system. The influences of Al-doping on TiO2 crystal form and the photovoltaic performance of DSSCs were investigated. X-ray photoelectron spectroscopy (XPS) data indicate that the doped Al ions exist in the form of Al3+ , and these ions play a role as e- or h+ traps and reduce the e-/h+ pair recombination rate. The corresponding Mott- Schottky plot indicates that the Al-doped TiO2 photoanode shifts the flat band potential positively. The positive shift of the flat band potential improves the driving force of injected electrons from the LUMO of the dye to the conduction band of TiO2. The Al-doped TiO2 thin film shows a photovoltaic efficiency of 6.48%, which is higher than that of the undoped TiO2 thin film (5.58%) and the short-circuit photocurrent density increases from 16.5 to 18.2 mA·cm-2.

Key wordsTitanium dioxide      Al-doped film      Hydrothermal method      X-ray photoelectron spectroscopy      Photovoltaic performance      Flat band potential     
Received: 26 October 2011      Published: 16 December 2011
MSC2000:  O646  

The project was supported by the National Key Basic Research Program of China (973) (2006CB202605), National High-Tech Research and Development Program of China (863) (2007AA05Z439), and National Natural Science Foundation of China (20973183).

Corresponding Authors: ZHOU Yang, LIN Yuan     E-mail:;
Cite this article:

LIU Qiu-Ping, HUANG Hui-Juan, ZHOU Yang, DUAN Yan-Dong, SUN Qing-Wen, LIN Yuan. Photovoltaic Performance of Dye-Sensitized Solar Cells Based on Al-Doped TiO2 Thin Films. Acta Phys. -Chim. Sin., 2012, 28(03): 591-595.

URL:     OR

(1) Choi,W.; Termin, A.; Hoffmann, M. J. Phys. Chem. 1994, 98, 13669.  
(2) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.  
(3) Ishii, T.; Kato, H.; Kudo, A. J. Photochem. Photobio. A: Chem. 2004, 163, 181.  
(4) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  
(5) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.  
(6) Wang, Z. S.;Yanagida, M.; Sayama, K.; Sugihara, H. Chem. Mater. 2006, 18, 2912.  
(7) Imahori, H.; Hayashi, S.; Umeyama, T.; Eu, S.; Oguro, A.; Kang, S.; Matano, Y.; Shishido, T.; Ngamsinlapasathian, S.; Yoshikawa, S. Langmuir 2006, 22, 11405.  
(8) Ma, T.; Akiyama, M.; Abe, E.; Imai, I. Nano Lett. 2005, 5, 2543.  
(9) Tian, H.; Hu, L.; Zhang, C.; Liu,W.; Huang, Y.; Mo, L.; Guo, L.; Sheng, J.; Dai, S. J. Phys. Chem. 2010, 114, 1627.
(10) Kim, C.; Kim, K.; Kim, H.; Han, Y. J. Mater. Chem. 2008, 18, 5809.  
(11) Xu,W.; Dai, S.; Hu, L.; Liang, L.;Wang, K. Phys. Lett. 2006, 23, 2288.
(12) Ko, K. H.; Lee, Y. C.; Jung, Y. J. J. Colloid Interface Sci. 2005, 283, 482.  
(13) Wang, K. P.; Teng, H. Phys. Chem. Phys. Chem. 2009, 11, 9489.
(14) Krol, R.; Goossens, A.; Schoonman, J. J. Electrochem. Soc. 1997, 14, 1723.
(15) Liu, B. S.; Zhao, X. J. Surf. Sci. 2005, 595, 203.  
(16) Randeniya, L. K.; Bendavid, A.; Martin, P. J.; Preston, E,W. J. Phys. Chem. C 2007, 111, 18334.  
(17) Zhu, K.; Neale, N.; Miedaner, A.; Frank, J. Nano Lett. 2007, 7, 69.  
(18) Zhang, D.; Toshida, T.; Oekermann, T.; Furuta, K.; Minoura, H. Adv. Funct. Mater. 2006, 16, 1228.  
(19) Baiju, K.; Shajush, P.;Wunderlich,W.; Mukundan, P.; Kumar, S.;Warrier. K. J. Mol. Catal. A: Chem. 2007, 276, 41.  
(20) Furubayashi, Y.; Hitosugi, T.; Yamamoto, Y.; Inaba, K.; Kinoda, G.; Hirose, Y.; Shimada, T.; Hasegawa, T. Appl. Phys. Lett. 2005, 86, 252101.  
(21) Shi, J. F.; Xu, G.; Miao, L.; Xu, X. Q. Acta Phys. -Chim. Sin. 2011, 27, 1287. [史继富, 徐刚, 苗蕾, 徐雪青. 物理化学学报, 2011, 27, 1287.]
(22) Li, J.; Kong, F. T.;Wu, G. H.; Zhang, C. N.; Dai, S. Y. Acta Phys. -Chim. Sin. 2011, 27, 881. [李洁, 孔凡太, 武国华, 张昌能, 戴松元. 物理化学学报, 2011, 27, 881.]
(23) Lu, X.; Mou, X.;Wu, J.; Zhang, D.; Zhang, L.; Huang, F.; Fu, F.; Huang, S. Adv. Funct. Mater. 2010, 20, 509.  
(24) Feng, X.; Shankar, K.; Paulose, M.; Grimes, C. Angew. Chem. Int. Edit. 2009, 48, 8095.  
(25) Henglein, A. Chem. Rev. 1989, 89, 1861.  
[1] Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 168-176.
[2] Yan WANG,Xiong LI,Shanwei HU,Qian XU,Huanxin JU,Junfa ZHU. Morphologies and Electronic Structures of Calcium-Doped Ceria Model Catalysts and Their Interaction with CO2[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1381-1389.
[3] Xiao-Ning ZHANG,Valerie HOLLIMON,DaShan BRODUS. A Method for Attaching Thiol Groups Directly on a Silicon (111) Substrate[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2364-2368.
[4] Xiu-Neng SONG,Guang-Wei WANG,Yan CHANG,Yong MA,Chuan-Kui WANG. Theoretical Study on X-Ray Spectroscopy of 1, 1, 2, 3, 4, 5-Hexaphenylsilole[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 943-949.
[5] Jian-Dong ZHUANG,Qin-Fen TIAN,Ping LIU. Bi2Sn2o7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 551-557.
[6] Qing GUO,Chuan-Yao ZHOU,Zhi-Bo MA,Ze-Feng REN,Hong-Jun FAN,Xue-Ming YANG. Fundamental Processes in Surface Photocatalysis on TiO2[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 28-47.
[7] ZHONG Jing-Rong, SHAO Lang, YU Chun-Rong, REN Yi-Ming. Study of Thermal Chemical Reactio[J]. Acta Phys. -Chim. Sin., 2015, 31(Suppl): 25-31.
[8] SHI Chen-Yang, HE Hui-Bin, HONG Zan-Fa, ZHAN Hong-Bing, FENG Miao. Effect of HCl Post-Treatment on Morphology of Hydrothermally Prepared Titanate Nanomaterials with Optical Limiting Properties[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1430-1436.
[9] HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1421-1429.
[10] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1105-1112.
[11] ZHANG Qiao-Ling, LI Lei, LIU You-Zhi, WEI Bing, GUO Jia-Xin, FENG Yu-Jie. Grafting Dynamics, Structures and Properties of Nano TiO2-SA Photocatalytic Materials[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1015-1024.
[12] CHEN Jun-Jie, XIAO Qian, Lü Zhan-Peng, AHSAN Ejaz, XIA Xiao-Feng, LIU Ting-Guang. Effects of Sulfate Ions on Anodic Dissolution and Passivity of Iron in Slightly Alkaline Solutions[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1093-1104.
[13] XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 913-919.
[14] LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 783-792.
[15] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 268-276.