Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (03): 654-660    DOI: 10.3866/PKU.WHXB201112232
CATALYSIS AND SURFACE SCIENCE     
Controllable Synthesis and Photocatalytic Performance of Bismuth Phosphate Nanorods
LIU Yan-Fang2, MA Xin-Guo1, YI Xin3, ZHU Yong-Fa1
1. Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China;
2. College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China;
3. Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China
Download:   PDF(1747KB) Export: BibTeX | EndNote (RIS)      

Abstract  BiPO4 nanorods with controlled morphologies were fabricated using a hydrothermal method. The photocatalytic activity of the BiPO4 nanorods was investigated by their ability to degrade methylene blue (MB). The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectroscopy (DRS). It was found that glycerol content, reaction time and temperature, and concentration of precursor influenced the morphology and structure of the product. The glycerol content and concentration of precursor mainly influence the morphology of the product. As the glycerol content increases, the aspect ratio first increases, and then decreases. The aspect ratio of the product increases and the size decreases as the concentration of precursor is lowered. When the reaction time is short, the crystallinity of the product is poor, and it forms a hexagonal phase. Hexagonal BiPO4 transforms into the monoclinic product when the reaction time is longer. The optimal temperature for crystal formation was found to be 160 °C. The results show that BiPO4 nanorods possess excellent photocatalytic activity under ultraviolet light. The photocatalytic activity of BiPO4 increased with an increase of aspect ratio and decrease of particle size. The crystallinity of the product has a significant influence on its photocatalytic activity. BiPO4 with higher crystallinity has higher photocatalytic activity, and monoclinic BiPO4 has higher photocatalytic activity than hexagonal BiPO4.

Key wordsBismuth phosphate      Nanorod      Hydrothermal method      Controllable synthesis      Photocatalysis      Methylene blue     
Received: 15 September 2011      Published: 23 December 2011
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (20925725, 50972070, 51102150) and National Key Basic Research Program of China (973) (2007CB613303).

Corresponding Authors: ZHU Yong-Fa     E-mail: zhuyf@tsinghua.edu.cn
Cite this article:

LIU Yan-Fang, MA Xin-Guo, YI Xin, ZHU Yong-Fa. Controllable Synthesis and Photocatalytic Performance of Bismuth Phosphate Nanorods. Acta Phys. Chim. Sin., 2012, 28(03): 654-660.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201112232     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I03/654

(1) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110, 6503.  
(2) Kudo, A.; Mesiki, Y. Chem. Soc. Rev. 2009, 38, 253.  
(3) Qin, X.; Jing, L. Q.; Xue, L. P.; Luan, Y. B.; Fu, H. G. Chin. J. Inorg. Chem. 2008, 24, 1108. [秦旭, 井立强, 薛连鹏, 栾云博, 付宏刚. 无机化学学报, 2008, 24, 1108.]
(4) Zhao, D.; Chen, C. C.;Wang, Y. F.; Ji, H.W.; Ma,W. H.; Zhao, J. C. J. Phys. Chem. C 2008, 112, 5993.  
(5) Tokunaga, S.; Kato, H.; Kudo, A. Chem. Mater. 2001, 13, 4624.  
(6) Yao,W. F.; Xu , X. H.;Wang, H.; Zhou, J. T.; Yang, X. N.; Zhang, Y.; Shang, S. X.; Huang, B. B. Appl. Catal. B 2004, 52, 109.  
(7) Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.;Wang,W. D. Appl. Catal. B 2006, 68, 125.  
(8) Fu, H. B.; Pan, C. S.; Zhang, L.W.; Zhu, Y. F. Mater. Res. Bull. 2007, 42, 696.  
(9) Zhang, L.W.; Xu, T. G.; Zhao, X.; Zhu, Y. F. Appl. Catal. B 2010, 98, 138.  
(10) Pan, C. S.; Zhu, Y. F. Environ. Sci. Technol. 2010, 44, 5570.  
(11) Pan, C. S.; Zhu, Y. F. J. Mater. Chem. 2011, 21, 4235.  
(12) Shang, M.;Wang,W. Z.; Ren, J.; Sun, S. M.; Zhang, L. CrystEngComm 2010, 12, 1754.  
(13) Fu, H. B.; Zhang, S. C.; Xu, T. G.; Zhu, Y. F.; Chen, J. M. Environ. Sci. Technol. 2008, 42, 2085.  
(14) Shi, R.;Wang, Y. J.; Li, D.; Xu, J.; Zhu, Y. F. Appl. Catal. B 2010, 100, 173.  
(15) Pan, C. S.; Li, D.; Ma, X. G.; Chen, Y.; Zhu, Y. F. Catal. Sci. Technol. 2011, 1, 1399.  
(16) Li, D.; Shi, R.; Pan, C. S.; Zhu, Y. F.; Zhao, H. J. CrystEngComm 2011, 13, 4695.  
(17) Xue, F.; Li, H. B.; Zhu, Y. C.; Xiong, S. L.; Zhang, X.W.; Wang, T. T.; Liang, X.; Qian, Y. T. J. Solid State Chem. 2009, 182, 1396.  
(18) Huang, K. L.; Liu, R. S.; Yang, Y. P.; Liu, S. Q.;Wang, L. P. Acta Phys. -Chim. Sin. 2007, 23, 655. [黄可龙, 刘人生, 杨幼平, 刘素琴, 王丽平. 物理化学学报, 2007, 23, 655].
(19) Li, G. F.; Ding, Y.; Zhang, Y. F.; Lu, Z.; Sun, H. Z.; Chen, R. J. Colloid Interface Sci. 2011, 363, 497.  
(20) Xiang, Q.; Liu, R. L.; Shi, L. Y.; Pan, Q. Y. Journal of Shanghai University (Natural Science) 2006, 12, 12. [向群, 刘荣利, 施利毅, 潘庆谊. 上海大学学报(自然科学版), 2006, 12, 12.]
(21) Zhu,W. Q.; Xu, L.; Ma, J.; Ren, J. M.; Chen, Y. S. Acta Phys. -Chim. Sin. 2010, 26, 1284. [朱文庆, 许磊, 马瑾, 任建梅, 陈亚芍. 物理化学学报, 2010, 26, 1284.]
(22) Rose, C. L.; Mooney-Slater. Z. Kristallogr. 1962, 117, 371.  
(23) Song, X. C.; Yang, E.; Zheng, Y. F.;Wang, Y. Acta Phys. -Chim. Sin. 2007, 23, 1123. [宋旭春, 杨娥, 郑遗凡, 王芸. 物理化学学报, 2007, 23, 1123.]
(24) Terzian, R.; Serpone, N.; Minero, C.; Pelizzetti, E. J. Catal., 1991, 128, 352.  
(25) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]
(26) Fu, H. B.; Yao,W. Q.; Zhang, L.W.; Zhu, Y. F. Mater. Res. Bull. 2008, 43, 2617.  
(27) Xian, T.; Yang, H.; Dai, J. F.;Wei, Z. Q.; Ma, J. Y.; Feng,W. J. Chin. J. Catal. 2011, 32, 618. [县涛, 杨华, 戴剑锋, 魏智强, 马金元, 冯旺军. 催化学报, 2011, 32, 618.]
(28) Xiao, Y.; Dang, L. Q.; An, L. Z.; Bai, S. Y.; Lei, Z. B. Chin. J. Catal. 2008, 29, 31. [肖义, 党利琴, 安丽珍, 白士英, 雷志斌. 催化学报, 2008, 29, 31.]  
[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[3] HU Xue-Jiao, GAO Guan-Bin, ZHANG Ming-Xi. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1324-1337.
[4] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[5] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[6] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.
[7] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[8] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[9] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[10] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[11] XU Han, TONG Ye-Xiang, LI Gao-Ren. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2171-2184.
[12] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[13] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[14] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[15] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.