Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (03): 596-602    DOI: 10.3866/PKU.WHXB201112261
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation and Electrochemical Performance of Aminoanthraquinone Derivative as Cathode Materials in Rechargeable Lithium Batteries
ZHAO Lei1, WANG An-Bang2, WANG Wei-Kun2, YU Zhong-Bao2, CHEN Shi1, YANG Yu-Sheng1,2
1. School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, P. R. China;
2. Military Power Sources Research and Development Center, Research Institute of Chemical Defense, Beijing 100191, P. R. China
Download:   PDF(663KB) Export: BibTeX | EndNote (RIS)      

Abstract  Two novel organic compounds, 5-amino-2,3-dihydro-1,4-dyhydroxy anthraquinone (ADDAQ) and 5-amino-1,4-dyhydroxy anthraquinone (ADAQ), were synthesized as cathode materials for lithium batteries. The compounds were characterized by 1H nuclear magnetic resonance (1H NMR) spectroscopy, mass spectrometry (MS), elemental analysis (EA), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy. The electrochemical performance of the compounds was investigated by galvanostatic discharge/charge (GD/C) measurements, cyclic voltammetry (CV), and electrochemical impedance spectrum (EIS). Compared with ADDAQ, the initial discharge specific capacity and cycle performance of ADAQ were effectively improved. The initial discharge specific capacity of ADAQ was 185 mAh·g-1, after 50 cycles, the specific capacity was maintained at 93 mAh·g-1. A reason for this improvement is discussed.

Key wordsLithium battery      5-Amion-2,3-dihydro-1,4-dyhydroxy anthraquinone      5-Amino-1,4-dyhydroxy anthraquinone      Organic cathode material      Electrochemical performance     
Received: 11 October 2011      Published: 26 December 2011
MSC2000:  O646  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2009CB220100).

Corresponding Authors: WANG Wei-Kun     E-mail: wangweikun2002@163.com
Cite this article:

ZHAO Lei, WANG An-Bang, WANG Wei-Kun, YU Zhong-Bao, CHEN Shi, YANG Yu-Sheng. Preparation and Electrochemical Performance of Aminoanthraquinone Derivative as Cathode Materials in Rechargeable Lithium Batteries. Acta Phys. Chim. Sin., 2012, 28(03): 596-602.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201112261     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I03/596

(1) Lu, Y. Quinones Chemistry; Chemical Industry Press: Beijing, 2009; pp 1-20. [陆阳. 醌类化学. 北京: 化学工业出版社, 2009: 1-20.]
(2) Boschi, T.; Pappa, R.; Pistoia, G.; Tocci, M. J. Electroanal. Chem. 1984, 176, 235.  
(3) Pasquali, M.; Pistoia, G.; Boschi, T.; Tagliatesta, P. Solid State Ionics 1987, 23, 261.  
(4) Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D.W.; Adams, R. N. J. Am. Chem. Soc. 1966, 88, 3498.  
(5) Kuder, J. E.; Pochan, J. M.; Turner, S. R.; Hinman, D. F. J. Electrochem. Soc. 1978, 125, 1750.  
(6) Jeftic, L.; Manning, G. J. Electroanal. Chem. 1970, 26, 195.  
(7) Alt, H.; Binder, H.; Kohling, A.; Sandstede, G. Electrochim. Acta 1972, 17, 873.  
(8) Forkner, M.W.; Miller, L. L.; Rak, S. F. Synth. Met. 1990, 36, 65.  
(9) Zhao, L.;Wang,W. K.;Wang, A. B.; Yu, Z. B.; Chen, S.; Yang, Y. S. J. Electrochem. Soc. 2011, 158, A991.
(10) Zhao, L.;Wan,W. K.;Wang, A. B.; Yu, Z. B.; Chen, S.; Yang, Y. S. Progress in Chemistry 2010, 22, 2268. [赵磊, 王维坤, 王安邦, 余仲宝, 陈实, 杨裕生. 化学进展, 2010, 22, 2268.]
(11) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.  
(12) Chen, H. Y.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J. M.; Poizot, P. J. Am. Chem. Soc. 2009, 131, 8984.  
(13) Chen, H. Y.; Poizot, P.; Dolhem, F.; Basir, N. I.; Mentre, O.; Tarascon, J. M. Electrochem. Solid State Lett. 2009, 12, A102.
(14) Song, Z. P.; Zhan, H.; Zhou, Y. H. Chem. Commun. 2009, No. 4, 448.
(15) Xiang, J. F.; Chang, C. X.; Li, M.;Wu, S. M.; Yuan, L. J.; Sun, J. T. Crystal Growth & Design 2008, 8, 280.  
(16) Han, X. Y.; Chang, C. X.; Yuan, L. J.; Sun, T. L.; Sun, J. T. Adv. Mater. 2007, 19, 1616.  
(17) Gall, T. L.; Reiman, K. H.; Grossel, M. C.; Owen, J. R. J. Power Sources 2003, 119, 316.  
(18) Zhang, C. N.; Xu, Z. J.; Zheng, C. L. Acta Chim. Sin. 1982, (4): 359. [张椿年, 徐卓君, 郑春雷. 化学学报, 1982, (4), 359.]
(19) Uyeki, E. M.; Nishio, A.;Wittek, P. J.; Cheng, C. C. J. Pharm. Sci. 1981, 70, 1011.  
(20) Wang,W. K.; Zhang, Y. Y.;Wang, A. B.; Yu, Z. B.; Han, M. F.; Yang, Y. S. Acta Phys. -Chim. Sin. 2010, 26, 47. [王维坤, 张勇勇, 王安邦, 余仲宝, 韩敏芳, 杨裕生. 物理化学学报, 2010, 26, 47.]
[1] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[2] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[3] DAWUT Gulbahar, LU Yong, ZHAO Qing, LIANG Jing, TAO Zhan-Liang, CHEN Jun. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1593-1603.
[4] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(4): 969-974.
[5] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. Chim. Sin., 2016, 32(3): 717-722.
[6] SUN Xue-Mei, GAO Li-Jun. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1521-1526.
[7] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1527-1534.
[8] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1437-1451.
[9] SU Shuo-Jian, NULI Yan-Na, FEILURE Tuerxun, YANG Jun, WANG Jiu-Lin. Effects of Cathode Current Collectors on the Electrochemical Performance of Rechargeable Magnesium Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(1): 111-120.
[10] FEILURE Tuerxun, ZULIPIYA Shadike, NULI Yan-Na, YANG Jun, WANG Jiu-Lin. Pyrazolyl Magnesium Halide/Tetrahydrofuran Solutions for Rechargeable Magnesium Battery Electrolytes[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1634-1640.
[11] ZHOU Ying, WANG Dao-Long, XIAO Nan, HOU Yu-Chen, QIU Jie-Shan. Influence of Heat Treatment Temperature on the Structure and Electrochemical Performance of Asphaltene-Based B/N Co-Doped Porous Carbons[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1127-1133.
[12] LI Li, HU Zhong-Ai, YANG Yu-Ying, WU Hong-Ying, CUI Lu-Juan. Synthesis of a MnO2/NiCo2O4 Composite by Electrostatic Self-Assembly and Its Electrochemical Performance[J]. Acta Phys. Chim. Sin., 2014, 30(5): 899-907.
[13] CHEN Lai, CHEN Shi, HU Dao-Zhong, SU Yue-Feng, LI Wei-Kang, WANG Zhao, BAO Li-Ying, WU Feng. Crystal Structure and Electrochemical Performance of Lithium-Rich Cathode Materials xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8)[J]. Acta Phys. Chim. Sin., 2014, 30(3): 467-475.
[14] BIAN Pei-Wen, NULI Yan-Na, Zainapuguli, YANG Jun, WANG Jiu-Lin. Benzenethiolate-Based Solutions for Rechargeable Magnesium Battery Electrolytes[J]. Acta Phys. Chim. Sin., 2014, 30(2): 311-317.
[15] CHEN Chan-Juan, HU Zhong-Ai, HU Ying-Ying, LI Li, YANG Yu-Ying, AN Ning, LI Zhi-Min, WU Hong-Ying. SnO2/Graphite Nanosheet Composite Electrodes and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2014, 30(12): 2256-2262.