Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (03): 647-653    DOI: 10.3866/PKU.WHXB201201051
CATALYSIS AND SURFACE SCIENCE     
Preparation, Characterization and Photocatalytic Performance of Ag/BiOX (X=Cl, Br, I) Composite Photocatalysts
YU Chang-Lin1, CAO Fang-Fang1,2, SHU Qing1, BAO Yu-Long1, XIE Zhi-Peng1, YU Jimmy C3, YANG Kai1
1. School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China;
2. Fujian Provincial Key Laboratory of Photocatalysis-State Key Laboratory Breeding Base, Fuzhou University, Fuzhou 350002, P. R. China;
3. Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
Download:   PDF(1768KB) Export: BibTeX | EndNote (RIS)      

Abstract  A series of novel bismuth oxyhalide Ag/BiOX (X=Cl, Br, I) composite photocatalysts were synthesized by a solution-based photodeposited method at room temperature. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) emission spectroscopy, UV-Vis diffuse reflectance spectroscopy (DRS), and N2 physical adsorption. The photocatalytic activity of the samples was evaluated by photocatalytic degradation of acid orange II under visible light (420 nm< λ <660 nm) irradiation. Analysis by N2 physical adsorption showed that deposition of Ag decreased the specific surface area of the catalyst. UV-Vis DRS analysis indicated that the presence of Ag could result in surface plasmon absorption, effectively increasing the visible light absorption ability of BiOCl and BiOBr. Furthermore, PL analysis indicated that Ag could effectively suppress the recombination of photogenerated electron (e-)-hole (h+) pairs of Ag/BiOX. Activity testing indicated that the deposition of an optimal amount of 1%-2% (w, mass fraction) Ag brought about 10, 13, and 2 fold increases in the photocatalytic activity of BiOCl, BiOBr, and BiOI, respectively. The high photocatalytic performance of the composite photocatalysts could be attributed to the strong visible light absorption, silver plasmon photocatalysis role and the recombination restraint of the e-/h+ pairs resulting from the presence of metal silver particles.

Key wordsBismuth oxyhalide      Silver deposition      Photocatalysis      Visible light      Promotion      Acid orange II     
Received: 13 September 2011      Published: 05 January 2012
MSC2000:  O643  
  TB321  
Fund:  

The project was supported by the National Natural Science Foundation of China (21067004), Natural Science Foundation of Jiangxi Province, China (2010GZH0048), Technological Project of Jiangxi Province Education Office, China (GJJ12344), and Open Project Program of State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University), China (200906).

Corresponding Authors: YU Chang-Lin     E-mail: yuchanglinjx@163.com
Cite this article:

YU Chang-Lin, CAO Fang-Fang, SHU Qing, BAO Yu-Long, XIE Zhi-Peng, YU Jimmy C, YANG Kai. Preparation, Characterization and Photocatalytic Performance of Ag/BiOX (X=Cl, Br, I) Composite Photocatalysts. Acta Phys. Chim. Sin., 2012, 28(03): 647-653.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201201051     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I03/647

(1) Zheng, H. L.; Cui, Y. J.; Zhang, J. S.; Ding, Z. X.;Wang, X. C. Chin. J. Catal. 2011, 32, 100. [郑华荣, 崔言娟, 张金水, 丁正新, 王心晨. 催化学报, 2011, 32, 100.]
(2) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]
(3) Cai, C. L.;Wang, J. G.; Cao, F. L.; Li, H. X.; Zhu, J. Chin. J. Catal. 2011, 32, 862. [蔡陈灵, 王金果, 曹锋雷, 李和兴, 朱建. 催化学报, 2011, 32, 862.]  
(4) Cui, H. N.; Zhao, Z. H.; Liang, Y. R.; Shi, J. Y.;Wu, D. C.; Liu, H.; Fu, R.W. Chin. J. Catal. 2011, 32, 321. [崔华楠, 赵振华, 梁业如, 石建英, 吴丁财, 刘鸿, 符若文. 催化学报, 2011, 32, 321.]
(5) Cong, Y.; Qin, Y.; Li, X. K.; Dong, Z. J.; Yuan, G. M.; Cui, Z. W. Acta Phys. -Chim. Sin. 2011, 27, 1509. [丛野, 秦云, 李轩科, 董志军, 袁观明, 崔正威. 物理化学学报, 2011, 27, 1509.]
(6) Yu, C. L.; Yang, K.; Yu, J. M.; Peng, P.; Cao, F. F.; Li, X.; Zhou, X. C. Acta Phys. -Chim. Sin. 2011, 27, 505. [余长林, 杨凯, 余济美, 彭鹏, 操芳芳, 李鑫, 周晓春. 物理化学学报, 2011, 27, 505.]
(7) Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.;Wang,W. D. Appl. Catal. B 2006, 68, 125.  
(8) Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. J. Phys. Chem. C 2008, 112, 747.  
(9) Wang,W. D.; Huang, F. Q.; Lin, X. P.; Yang, J. H. Catal. Commun. 2008, 9, 8.  
(10) Yu, C. L.; Yu, J. C. Mater. Sci. Eng. B 2010, 166, 213.  
(11) Yu, C. L.; Fan, C. F.; Meng, X. J.; Yang, K.; Cao, F. F.; Li, X. Reac. Kinet. Mech. Cat. 2011, 103, 141.  
(12) Yu, C. L.; Fan, C. F.; Yu, J. C.; Zhou,W. Q.; Yang, K. Mater. Res. Bull. 2011, 46, 140.  
(13) Lin, X. P.; Huang, F. Q.;Wang,W. D.; Shi, J. L. J. Phys. Chem. B 2006, 110, 24629.  
(14) Sun, B.; Vorontsov, V.; Smirniotis, P. G. Langmuir 2003, 19, 3151.  
(15) Einaga, H.; Futamura, S.; Ibusuki, T. Environ. Sci. Technol. 2001, 35, 1880.  
(16) Yu, C. L.; Yu, J. C. Catal. Lett. 2009, 129, 462.  
(17) Matsubara, K.; Tatsuma, T. Adv. Mater. 2007, 19, 2802.  
(18) Kormann, C.; Bahnemann, D.W.; Hoffmann, M. R. J. Phys. Chem. 1988, 92, 5196.  
(19) Xiang, Q. J.; Yu, J. G.; Cheng, B.; Ong, H. C. Chem. Asian J. 2010, 5, 1466.
(20) Yu, J. G.; Dai, G. P.; Huang, B. B. J. Phys. Chem. C 2009, 113, 16394.  
(21) Park, M. S.; Kang, M. Mater. Lett. 2008, 62, 183.
(22) Herrmann, J. M.; Ahiri, H.; Ait-Ichou, Y. Appl. Catal. B 1997, 13, 219.  
(23) Yu, C. L.; Yu, J. C.; Chan, M. J. Solid State Chem. 2009, 182, 1061.  
(24) Jiang, Z.; Yang, F.; Yang, G. D. J. Photochem. Photobio. A 2010, 212, 8.  
(25) Chang, X. F.; Huang, J.; Tan, Q.Y.;Wang, M. Catal. Commun. 2009, 10, 1957.  
(26) Yang, S. Y.; Chen, Y. Y.; Zheng, J. G.; Cui, Y. J. J. Environ. Sci. 2007, 19, 8689.
(27) Minero, C.; Mariella, G.; Maurino, V.; Vione, D.; Pelizzetti, E. Langmuir 2000, 16, 8964.  
[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[3] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[5] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[6] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[7] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[8] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[9] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[10] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[11] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[12] LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. Chim. Sin., 2016, 32(4): 950-960.
[13] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. Chim. Sin., 2016, 32(3): 737-744.
[14] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.
[15] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.