Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (04): 818-822    DOI: 10.3866/PKU.WHXB201201132
ELECTROCHEMISTRY AND NEW ENERGY     
Reaction Mechanism of 1,4-Dimethoxy Benzene as an Overcharge Protection Additive
LI Tian-Tian1, WANG Chao-Yang1, XING Li-Dan1, LI Wei-Shan1,2,3, PENG Bin1, XU Meng-Qing1,2,3, GU Feng-Long1,2,3, HU She-Jun1,2,3
1. School of Chemistry and Environment, South China Normal University, Guangzhou 510006, P. R. China;
2. Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006, P. R. China;
3. Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou 510006, P. R. China
Download:   PDF(885KB) Export: BibTeX | EndNote (RIS)      

Abstract  The reaction mechanism of 1,4-dimethoxybenzene (p-DMOB) as an overcharge protection additive for lithium ion batteries was determined by theoretical calculation of density functional theory (DFT) at the level of B3LYP/6-311+G(d,p) and MP2/6-311+G(d,p). It was found that p-DMOB is oxidized prior to the solvents, ethyl methyl carbonate, dimethyl carbonate, and ethylene carbonate, when the lithium ion battery is overcharged. The calculated oxidative potentials of p-DMOB by B3LYP and MP2 methods are well in agreement at 4.12 and 4.05 V (vs Li/Li), respectively. The initial oxidation of p-DMOB involves a one-electron transfer resulting in a radical cation p-DMOB. The corresponding energy variations were 701.24 and 728.27 kJ·mol-1 from B3LYP and MP2 calculations, respectively. The p-DMOB species then loses one proton forming a radical p-DMOB·through the breaking of a C―H bond on the benzene ring, with the corresponding energy variations of 1349.78 and 1810.99 kJ·mol-1 for B3LYP and MP2, respectively. The p-DMOB·species is unstable and copolymerizes forming an insulated polymer with the corresponding energy variations of -553.37 and -1331.20 kJ·mol-1 for B3LYP and MP2, respectively.

Key wordsLithium ion battery      Overcharge protection additive      1,4-Dimethoxy benzene      Reaction mechanism      Density functional theory     
Received: 31 October 2011      Published: 13 January 2012
MSC2000:  O646  
Fund:  

The project was supported by the Joint Project of National Natural Science Foundation of China and Natural Science Foundation of Guangdong Province (U1134002) and Natural Science Foundation of Guangdong Province, China (10351063101000001).

Corresponding Authors: LI Wei-Shan     E-mail: liwsh@scnu.edu.cn
Cite this article:

LI Tian-Tian, WANG Chao-Yang, XING Li-Dan, LI Wei-Shan, PENG Bin, XU Meng-Qing, GU Feng-Long, HU She-Jun. Reaction Mechanism of 1,4-Dimethoxy Benzene as an Overcharge Protection Additive. Acta Phys. Chim. Sin., 2012, 28(04): 818-822.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201201132     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I04/818

(1) Ménard, L.; Fontès, G.; Astier, S. Energy Convers. Manage. 2010, 327.
(2) Yu, Y.; Gu, L.; Zhu, C.; Aken, P. A.; Maier, J. J. Am. Chem. Soc. 2009, 131, 15984.  
(3) Yao, Z. D.;Wei,W.;Wang, J. L.; Yang, J.; Nuli, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 1005. [姚真东, 魏巍, 王久林, 杨军, 努丽燕娜. 物理化学学报, 2011, 27, 1005.]
(4) Fergus, J.W. J. Power Sources 2010, 195, 939.  
(5) Xu. J.; Yao,W. H.; Yao, Y.W.;Wang, Z. C.; Yang, Y. Acta Phys. -Chim. Sin. 2009, 25, 201. [许杰, 姚万浩, 姚宜稳, 王周成, 杨勇. 物理化学学报, 2009, 25, 201]
(6) Xu, M. Q.; Zuo, X. X.; Li,W. S.; Zhou, H. J.; Liu, J. S.; Yuan, Z. Z. Acta Phys. -Chim. Sin. 2006, 22, 335. [许梦清, 左晓希, 李伟善, 周豪杰, 刘建生, 袁中直. 物理化学学报, 2006, 22, 335.]  
(7) Feng, J. K.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Electrochem. Commun. 2007, 9, 25.  
(8) Chung, Y. S.; Yoo, S. H.; Kim, C. K. Ind. Eng. Chem. Res. 2009, 48, 4346.  
(9) Matsuta, S.; Kato, Y.; Ota, T.; Kurokawa, H.; Yoshimura, S.; Fujitani, S. J. Electrochem. Soc. 2001, 148, A7.
(10) Moshkovich, M.; Cojocaru, M.; Gottlieb, H. E.; Aurbach, D. J. Electroanal. Chem. 2001, 497, 84.  
(11) Xing, L. D.;Wang, C. Y.; Li,W. S.; Xu, M. Q.; Meng, X. L.; Zhao, S. F. J. Phys. Chem. B 2009, 113, 5181.  
(12) Xing, L. D.; Li,W. S.;Wang, C. Y.; Gu, F. L.; Xu, M. Q.; Tan, C. L.; Yi, J. J. Phys. Chem. B 2009, 113, 16596.  
(13) Balakrishnan, P. G.; Ramesh, R.; Kumar, T. P. J. Power Sources 2006, 155, 401.  
(14) Leising, R. A.; Palazzo, M. J.; Takeuchi, E. S.; Takeuchi, K. J. J. Power Sources 2001, 97, 681.  
(15) Li, S. L.; Ai, X. P.; Feng, J. K.; Cao, Y. L.; Yang, H. X. J. Power Sources 2008, 184, 553.  
(16) Xu, M. Q.; Xing, L. D.; Li,W. S.; Zuo, X. X.; Shu, D.; Li, G. L. J. Power Sources 2008, 184, 427.  
(17) Chen, J.; Buhrmester, C.; Dahn, J. R. Electrochem. Solid-State Lett. 2005, 8, A59.
(18) Chen, Z. H.; Amine, K. Electrochim. Acta 2007, 53, 453.  
(19) Taggougui, M.; Carré, B.;Willmann, P.; Lemordant, D. J. Power Sources 2007, 174, 1069.  
(20) Wang, R. L.; Dahn, J. R. J. Electrochem. Soc. 2006, 153, A1922.
(21) Zheng, H. H.;Wang, X. J.; Li, B.; Qin, J. H. Chin. J. Power Sources 2006, 30, 511. [郑洪河, 王显军, 李苞, 秦建华. 电源技术, 2006, 30, 511]
(22) Li, T. T.; Xing, L. D.; Li,W. S.; Peng, B.; Xu, M. Q.; Gu, F. L.; Hu, S. J. J. Phys. Chem. A 2011, 115, 4988.  
(23) Demartinez, M. C.; Marquez, O. P.; Marquez, J.; Hahn, F.; Beden, B.; Crouigneau, P.; Rakotondrainibe, A.; Lamy, C. Syth. Met. 1997, 88, 187.
(24) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, revision B.05; Gaussian Inc.: Pittsburgh, PA, 2003.
(25) Abbotto, A.; Streitwieser, A.; Schleyer, P. R. J. Am. Chem. Soc. 1997, 119, 11255.  
(26) Wang, Y.; Balbuena, P. B. J. Phys. Chem. A 2001, 105, 9972.  
(27) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.  
(28) Trasatti, S. Pure Appl. Chem. 1986, 58, 955.  
[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[7] WANG Zi-Min, ZHENG Mo, XIE Yong-Bing, LI Xiao-Xia, ZENG Ming, CAO Hong-Bin, GUO Li. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1399-1410.
[8] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[9] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[10] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1085-1107.
[11] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[12] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[13] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.
[14] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[15] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. Chim. Sin., 2017, 33(3): 530-538.