Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (03): 641-646    DOI: 10.3866/PKU.WHXB201201161
CATALYSIS AND SURFACE SCIENCE     
Effect of Fluoride Doping and Adsorption on the Photocatalytic Activity of TiO2
GAO Yue-Jun, XU Yi-Ming
Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
Download:   PDF(558KB) Export: BibTeX | EndNote (RIS)      

Abstract  It has been reported that bulk doping or surface modification of TiO2 with fluoride ions can enhance its photocatalytic activity for degradation of organic compounds in water. The effect of the former is ascribed to enhanced separation of photogenerated charge carriers through the surface-formed Ti3 + species, whereas that of the latter is ascribed to enhanced desorption of hydroxyl radicals through the interfacial fluoride ions. However, the difference in activity between two modified catalysts has not been investigated. In this work, different fluoride-doped samples were hydrothermally prepared from butyl titanate and NH4F. Their photocatalytic activities after addition of NaF or AgNO3 to the aqueous suspension were evaluated using phenol degradation as a model reaction. All the fluoride ions in the oxide lattices and in the outer and inner Helmholtz double layers of TiO2 were positive to phenol degradation, but the magnitude of their influences followed a decreasing order. Moreover, phenol degradation in the presence of both NaF and AgNO3 was much faster than the sum of their individual rates. These results indicate that combination of conduction band electron reduction and valence band hole oxidation is an effective way to improve the quantum yield of TiO2 photocatalysis.

Key wordsPhotocatalysis      Titanium dioxide      Fluorine ion      Doping      Adsorption     
Received: 25 September 2011      Published: 16 January 2012
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (20873124) and National Key Basic Research Program of China (973) (2011CB936003).

Corresponding Authors: XU Yi-Ming     E-mail: xuym@css.zju.edu.cn
Cite this article:

GAO Yue-Jun, XU Yi-Ming. Effect of Fluoride Doping and Adsorption on the Photocatalytic Activity of TiO2. Acta Phys. -Chim. Sin., 2012, 28(03): 641-646.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201201161     OR     http://www.whxb.pku.edu.cn/Y2012/V28/I03/641

(1) Xu, Y. M. Prog. Chem. 2009, 21 (2-3), 524. [许宜铭. 化学进展, 2009, 21 (2-3), 524.]
(2) Thompson, T. L.; Yates, J. T. Chem. Rev. 2006, 106, 4428.  
(3) Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem. 2004, 3, 33.
(4) Hoffmann, M. R.; Martin, S. T.; Choi,W.; Bahnemann, D.W. Chem. Rev. 1995, 95, 69.  
(5) Emeline, A. V.; Zhang, X.; Jin, M.; Murakami, T.; Fujishima, A. J. Phys. Chem. B 2006, 110, 7409.  
(6) Minero, C.; Mariella, G.; Maurino, V.; Pelizzetti, E. Langmuir 2000, 16, 2632.  
(7) Minero, C.; Mariella, G.; Maurino, V.; Vione, D.; Pelizzetti, E. Langmuir 2000, 16, 8964.  
(8) Mrowetz, M.; Selli, E. Phys. Chem. Chem. Phys. 2005, 7, 1100.
(9) Mrowetz, M.; Selli, E. New J. Chem. 2006, 30, 108.  
(10) Park, H.; Choi,W. J. Phys. Chem. B 2004, 108, 4086.  
(11) Lee, J.; Choi,W.; Yoon, J. Environ. Sci. Technol. 2005, 39, 6800.  
(12) Park, H.; Choi,W. Catal. Today 2005, 101, 291.  
(13) Kim, H.; Choi,W. Appl. Catal. B 2006, 69, 127.
(14) Janczyk, A.; Krakowska, E.; Stochel, G.; Macyk,W. J. Am. Chem. Soc. 2006, 128, 15574.  
(15) Jiang, J. J.; Long, M. C;Wu, D. Y.; Cai,W. M. Acta Phys. -Chim. Sin. 2011, 27 (5), 1149. [蒋晶晶, 龙明策, 吴德勇, 蔡伟民. 物理化学学报, 2011, 27 (5), 1149.]
(16) Lv, K. L.; Xu, Y. M. J. Phys. Chem. B 2006, 110, 6204.  
(17) Xu, Y. M.; Lv, K. L.; Xiong, Z. G.; Leng,W. H.; Du,W. P.; Liu, D.; Xue, X. J. J. Phys. Chem. C 2007, 111, 19024.  
(18) Yu, J. M.; Yu, J. G.; Ho,W. K.; Jiang, Z. T.; Zhang, L. Z. Chem. Mater. 2002, 14, 3808.  
(19) Ho,W. K.; Yu, J. C.; Lee, S. C. Chem. Commun. 2006, 1115.  
(20) Czoska, A. M.; Livraghi, S.; Chiesa, M.; Giamello, E.; Agnoli, S.; Granozzi, G.; Finazzi, E.; Valentin, C. D.; Pacchioni, G. J. Phys. Chem. C 2008, 112, 8951.  
(21) Cave, G. C.; Hume, D. N. Anal. Chem. 1952, 24, 1503.  
(22) Li, D.; Haneda, H.; Labhsetwar, N. K.; Hishita, S.; Ohashi, N. Chem. Phys. Lett. 2005, 401, 579.  
(23) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N.; Labhsetwar, N. K. J. Fluorine Chem. 2005, 126, 69.  
(24) Lv, K. L.; Xiang, Q. J.; Yu, J. G. Appl. Catal. B 2011, 104, 275.  
(25) Grela, M. A.; Coronel, M. E. J.; Colussi, A. J. J. Phys. Chem. 1996, 100, 16940.
(26) Cong, S.; Xu, Y. M. J. Hazard. Mater. 2011, 192, 485.  
(27) Sun, Q.; Xu, Y. M. J. Phys. Chem C 2010, 114, 18911.  
(28) Wang, C. M.; Mallouk, T. E. J. Phys. Chem. 1990, 94, 4276.  
(29) Cheng, X. F.; Leng,W. H.; Liu, D. P.; Xu, Y. M.; Zhang, J. Q.; Cao, C. N. J. Phys. Chem C 2008, 112, 8725.  
[1] GU Yuxing, YANG Juan, WANG Dihua. Electrochemical Features of Carbon Prepared by Molten Salt Electro-reduction of CO2[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 208-214.
[2] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.
[3] Yongjun LI,Yuliang LI. Chemical Modification and Functionalization of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 992-1013.
[4] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[5] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[6] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[7] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[8] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[9] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[10] Peng HUANG,Ligang YUAN,Yaowen LI,Yi ZHOU,Bo SONG. L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar p-i-n Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1264-1271.
[11] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[12] Hui-Jun YAN,Biao LI,Ning JIANG,Ding-Guo XIA. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1781-1788.
[13] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[14] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[15] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.