Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (03): 609-614    DOI: 10.3866/PKU.WHXB201201162
ELECTROCHEMISTRY AND NEW ENERGY     
Carbon Nanotube/Polyaniline/Graphene Composite Paper and Its Electrochemical Capacitance Behaviors
JIN Yu1,2, CHEN Hong-Yuan2,3, CHEN Ming-Hai2, LIU Ning1, LI Qing-Wen2
1. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China;
2. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China;
3. Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(969KB) Export: BibTeX | EndNote (RIS)      

Abstract  Flexible carbon nanotube/polyaniline/graphene (CNT/PANI/GR) composite papers were prepared by electrochemical polymerization of PANI on cyclic voltammetry electrochemical oxidized CNT (CV-CNT) papers and the successive adsorption of GR. CNT, PANI, and GR provided a flexible conducting network skeleton, faradaic pseudocapacitive material, and surface conductivity modification properties, respectively. The composite papers exhibited a sandwich structure with an outer layer of GR and an inner layer composite network of CV-CNT/PANI, taking full advantage of the superior properties of the three components. The structure and morphology were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The chemical capacitance characteristics were studied thoroughly. It was shown that PANI nanowhiskers wrapped around the CV-CNT surface evenly. The composite paper exhibited enhanced capacitance and high current charge/discharge characteristics as a supercapacitor electrode. The specific capacitance level could reach 415 F·g-1 at a current density of 0.5 A·g-1 and maintain a level of 106 F·g-1 at the higher current density of 20 A·g-1. In the protection of GR, the composite maintained a higher capacitance than CV-CNT/PANI after 1000 cycles, suggesting that the CV-CNT/PANI/GR composite would be an ideal flexible electrode material for a supercapacitor.

Key wordsCarbon nanotube      Polyaniline      Graphene      Electrochemical polymerization      Capacitance     
Received: 09 October 2011      Published: 16 January 2012
MSC2000:  O646  
Fund:  

The project was supported by the Science and Technology Project of Suzhou, China (SYG201018) and Production and Research Collaborative Innovation Project of Jiangsu Province, China (BY2011178).

Corresponding Authors: CHEN Ming-Hai, LIU Ning     E-mail: mhchen2008@sinano.ac.cn; ningliu@mail.hf.ah.cn
Cite this article:

JIN Yu, CHEN Hong-Yuan, CHEN Ming-Hai, LIU Ning, LI Qing-Wen. Carbon Nanotube/Polyaniline/Graphene Composite Paper and Its Electrochemical Capacitance Behaviors. Acta Phys. Chim. Sin., 2012, 28(03): 609-614.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201201162     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I03/609

(1) Meng, C. Z.; Liu, C. H.; Chen, L. Z.; Hu, C. H.; Fan, S. S. Nano Lett. 2010, 10, 4025.  
(2) Wang, H. L.; Hao, Q. L.; Yang, X. J.; Lu, L. D.;Wang, X. Electrochem. Commun. 2009, 11, 1158.  
(3) Jyongsik, J.; Joonwon, B.; Moonjung, C.; Seong-Ho, Y. Carbon 2005, 43, 2730.  
(4) Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10, 4863.  
(5) Huang, Z. B.; Gao, D. S.; Li, C. H.; Lei, G. T.; Zhou, J. Acta Chim. Sin. 2007, 11, 6. [黄再波, 高德淑, 李朝晖, 雷钢铁, 周姬. 化学学报, 2007, 11, 6.]
(6) Zhang, L. Y.; He, S. J.; Chen, S. L.; Guo, Q. H.; Hou, H. Q. Acta Phys. -Chim. Sin. 2010, 26, 3181. [张雷勇, 何水剑, 陈水亮, 郭乔辉, 侯豪情. 物理化学学报, 2010, 26, 3181.]
(7) Kim, C.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Kim, Y. J.; Endo, M.; Yang, S. C. Adv. Mater. 2007, 19, 2341.  
(8) Laforgue, A. J. Power Sources 2011, 196, 559.  
(9) Yan, X. B.; Tai, Z. X.; Chen, J. T.; Xue, Q. J. Nanoscale 2011, 3, 212.  
(10) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706.  
(11) Han, T. H.; Lee,W. J.; Lee, D. H.; Kim, J. E.; Choi, E. Y.; Kim, S. O. Adv. Mater. 2010, 22, 2060.  
(12) Zhu, Y.W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.W.; Ferreira, P. J.; Pirkle, A.;Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332, 1537.  
(13) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Norio, S. Y.; Qin, L. C. Carbon 2011, 49, 2917.  
(14) Wang, D.W.; Li, F.; Zhao, J. P.; Ren,W. C.; Chen, Z. G.; Tan, J.;Wu, Z. S.; Ian, G.; Lu, G. Q.; Cheng, H. M. ACS Nano 2009, 3, 1745.  
(15) Chou, S. L.;Wang, J. Z.; Chew, S. Y.; Liu, H. K.; Dou, S. X. Electrochem. Commun. 2008, 10, 1724.  
(16) Lee, S.W.; Kim, J. Y.; Chen, S. ACS Nano 2010, 4, 3889.  
(17) Wu, Z. S.; Ren,W.; Gao, L.; Jiang, C.; Cheng, H. M. Carbon 2009, 47, 493.  
(18) Ye, J. S.; Liu, X.; Cui, H. F. Electrochem. Commun. 2005, 7, 249.  
(19) Zhang, H.; Cao, G. P.;Wang,W. K.; Yuan, K. G.; Xu, B.; Zhang,W. F.; Cheng, J.; Yang, Y. S. Electrochimica Acta 2009, 54, 1153.  
(20) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B. Nat. Nanotech. 2008, 3, 101.  
(21) Kim, B.W.; Chung, H.; Kim,W. J. Phys. Chem. C 2010, 114, 15223.
(22) Wang, Y.; Serrano, S.; Santiago-Avilés, J. J. Synth. Metal 2003, 138, 423.  
(23) Louarn, G.; Lapkowski, M.; Quillard, S.; Pron, A.; Buisson, J. P.; Lefrant, S. J. Phys. Chem. 1996, 100, 6998.
(24) Yan, X. B.; Han, Z. J.; Yang, Y.; Tay, B. K. Sensor Actuators B 2007, 123, 107.  
(25) Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Adv. Mater. 2006, 18, 2619.  
(26) Gao, B.; Fu, Q. B.; Su, L. H.; Yuan, C. Z.; Zhang, X. G. Electrochimica Acta 2010, 55, 2311.  
(27) Du, B.; Jiang, Q.; Zhao, X. F.; Lin, S. Z.; Mu, P. S.; Zhao, Y. Acta Phys. -Chim. Sin. 2009, 25, 513. [杜冰, 江奇, 赵晓峰, 林孙忠, 幕佩珊, 赵勇. 物理化学学报, 2009, 25, 513.]
[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[2] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[4] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[5] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[6] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[7] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[8] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[9] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[10] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[11] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[12] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[13] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[14] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[15] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.