Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (04): 799-804    DOI: 10.3866/PKU.WHXB201202012
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Factor Group Analysis of Molecular Vibrational Modes of Graphene and Density Functional Calculations
LIU Bo1, SUN Hong-Juan2, PENG Tong-Jiang2
1. College of Science, Southwest University of Science and Technology, Mianyang 621010, Sichuan Province, P. R. China;
2. Institute of Mineral Materials and Application, Southwest University of Science and Technology, Mianyang 621010, Sichuan Province, P. R. China
Download:   PDF(555KB) Export: BibTeX | EndNote (RIS)      

Abstract  The molecular vibrational modes of graphene were analyzed theoretically by factor group analysis. The molecular vibrational modes of graphene and the spectral characteristics of each vibrational mode were calculated successfully. The molecular vibrational frequency and mode of graphene were also calculated by first-principles density functional theory based on establishment of the graphene Bravais crystal unit cell. The number of vibrational modes and corresponding vibrational frequency spectral properties calculated were consistent with the results obtained using factor group analysis. The above calculations and systematic comparison between the infrared and Raman spectra of graphene and graphite were used to determine why the infrared active vibrational modes A2u and E1u with D6h point group did not appear on the experimental infrared spectrum of graphene.

Key wordsGraphene      Factor group      Vibrational mode      First-principles      Infrared spectrum      Raman spectrum     
Received: 07 November 2011      Published: 01 February 2012
MSC2000:  O641  
Fund:  

The project was supported by the Doctoral Fund of Southwest University of Science and Technology, China (11ZX7135).

Corresponding Authors: SUN Hong-Juan     E-mail: sunhongjuan@swust.edu.cn
Cite this article:

LIU Bo, SUN Hong-Juan, PENG Tong-Jiang. Factor Group Analysis of Molecular Vibrational Modes of Graphene and Density Functional Calculations. Acta Phys. Chim. Sin., 2012, 28(04): 799-804.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201202012     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I04/799

(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  
(2) Landau, L. D. Phys. Z. Sowjetunion 1937, 11, 26.
(3) Peierls, R. E. Ann Inst. Henri Poincare 1935, 5, 177.
(4) Geim, A. K.; Novoselov, K. S. Nat. Mat. 2007, 6, 183.  
(5) Tse,W. K.; Das, S. S. Phys. Rev. Lett. 2007, 99, 236802.  
(6) Liang,W.; Xiao, Y.; Ding, J.W. Acta Phys. Sin. 2008, 57, 3714. [梁维, 肖杨, 丁建文. 物理学报. 2008, 57, 3714.]
(7) Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1127.
(8) Xiao, Y.; Yan, X. H.; Cao, J. X.; Ding, J.W. Acta Phys. Sin. 2003, 7, 1720. [肖杨,颜晓红, 曹觉先, 丁建文. 物理学报, 2003, 7, 1720.]
(9) Sun, F. J.; Lou, D. H.; Li, L. J. Journal of Northeastern University(Natural Science) 2008, 29, 145. [孙凤久, 楼丹花, 李莉娟. 东北大学学报: 自然科学版, 2008, 29, 145.]
(10) Peng, T. J. Study on crystal chemistry of phlogopite-vermiculite from weili, XinJiang. Ph. D. Dissertation, China University of Geosciences, Beijing, 1993. [彭同江. 新疆尉犁县且干布拉克蛭石矿金云母-蛭石间层矿物的晶体化学研究[D]. 北京: 中国地质大学, 1993.]
(11) Segall, M. D.; Lindan, P. L. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter 2002, 14, 2717.  
(12) Lin, M. H. Concise Guide of Quantum Chemistry; Chemical Industry Press: Beijing, 2005; p 274. [林梦海. 量子化学简明教程. 北京: 化学工业出版社, 2005: 274.]  
(13) Falkovsky, L.A. Phys. Lett. A 2008, 372, 5191.
(14) Yang, X. G.;Wu, Q. L. Raman Spectroscopy Analysis and Application; National Defence Industry Press: Beijing, 2008; pp 11-12. [杨序纲, 吴琪琳. 拉曼光谱的分析与应用. 北京: 国防工业出版社, 2008, 11-12.]  
(15) Vosko, S. J.;Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.  
(16) Zhang, X. M.;Wang, L. G.; Li, Y. J. At. Mol. Phys. 2008, 25, 755. [张秀梅, 王利光, 李勇. 原子与分子物理学报, 2008, 25, 755.]
(17) Huang, K. Solid State Physics; Higher Education Press: Beijing, 1988; pp 92-103; adapted by Han, R. Q. [黄昆. 固体物理学. 韩汝琦, 改编. 北京: 高等教育出版社, 1988, 92-103.]
(18) Balandin, A. A.; Ghosh, S.; Bao,W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 903.
(19) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2011, 27, 740. [杨勇辉, 孙红娟, 彭同江, 黄桥. 物理化学学报, 2011, 27, 740.]
(20) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401.  
(21) Malarda, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rep. 2009, 473, 54.
(22) Ferrari, A. C.; Robertson, J. Phys. Rev. B 2000, 61, 14098.
(23) Stephanie, R.; Christian, T. Phil. Trans. R. Soc. Lond. A 2004, 362, 2273.
(24) Wu, G. Z. Raman Spectroscopy: An intensity approach; Science Press: Beijing, 2007; pp 61-62. [吴国桢. 拉曼谱学: 峰强中的信息. 北京: 科学出版社, 2007: 61-62.]
(25) Nemanich, R. J.; Lucovsky, G.; Solin, S. A. Mater. Sci. Eng. 1977, 31, 157.  
[1] FANG Lei, SUN Mingjun, CAO Xinrui, CAO Zexing. Mechanical and Optical Properties of a Novel Diamond-like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor:a First-Principles Study[J]. Acta Phys. Chim. Sin., 2018, 34(3): 296-302.
[2] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[4] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[5] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[6] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[7] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[8] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[9] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[10] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[11] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[12] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[13] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[14] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[15] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.