Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (04): 837-842    DOI: 10.3866/PKU.WHXB201202074
Preparation of Ordered Mesoporous Carbon/NiCo2O4 Electrode and Its Electrochemical Capacitive Behavior
CHE Qian, ZHANG Fang, ZHANG Xiao-Gang, LU Xiang-Jun, DING Bing, ZHU Jia-Jia
College of Material Science & Engneering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
Download:   PDF(788KB) Export: BibTeX | EndNote (RIS)      

Abstract  OMC/NiCo2O4 composite was prepared by co-precipitation with ordered mesoporous carbon (OMC) as a support. The crystalline structure and morphology of the composite were investigated by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). TEM images showed that NiCo2O4 was uniformly coated on the OMC. Cyclic voltammetry and galvanostatic charge-discharge were used to investigate the electrochemical performance of the OMC/ NiCo2O4 composite. The specific capacitances of the OMC/NiCo2O4 composite with a mass fraction of 40% NiCo2O4 were 577.0 F·g-1 at a current density of 1 A·g-1 and 470.8 F·g-1 at 8 A·g-1. The specific capacitance remains at 508.4 F·g-1 after 2000 cycles at a current density of 2 A·g-1, with a capacitance retention of 92.7%.

Key wordsSupercapacitor      Ordered mesoporous carbon      NiCo2O4      Co-precipitation method     
Received: 31 October 2011      Published: 07 February 2012
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (20873064), Natural Science Foundation of Jiangsu Province, China (BK2011030), and Specialized Research Fund for the Doctoral Program of Higher Education of China (20060287026).

Corresponding Authors: ZHANG Xiao-Gang     E-mail:
Cite this article:

CHE Qian, ZHANG Fang, ZHANG Xiao-Gang, LU Xiang-Jun, DING Bing, ZHU Jia-Jia. Preparation of Ordered Mesoporous Carbon/NiCo2O4 Electrode and Its Electrochemical Capacitive Behavior. Acta Phys. Chim. Sin., 2012, 28(04): 837-842.

URL:     OR

(1) Conway, B. E. J. Electrochem. Soc. 1991, 138, 1539.  
(2) Miller, J. R. Electrochim. Acta 2006, 52, 1703.  
(3) Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22, E28.
(4) Zhang, F.; Yuan, C. Z.; Zhang, X. G.; Zhang, L. J.; Xu, K. Acta Phys. - Chim. Sin. 2010, 26 (12), 3175. [张方, 原长洲, 张校刚, 章罗江, 徐科. 物理化学学报, 2010, 26 (12), 3175.]
(5) Yuan, C. Z.; Gao, B.; Shen, L. F.; Yang, S. D. ; Hao, L. ; Lu, X. J.; Zhang, F.; Zhang, L. J.; Zhang, X. G. Nanoscale 2011, 3, 529.  
(6) Hwang, S.W.; Hyun, S. H. J. Non-Cryst. Solids 2004, 347, 238.  
(7) Kim, N. D.; Kim,W.; Joo, J. B.; Oh, S.; Kim, P.; Kim, Y.; Yi, J. J. Power Sources 2008, 180, 671.  
(8) Li,W.; Chen, D.; Li, Z.; Shi, Y.;Wan, Y.; Huang, J.; Yang, J.; Zhao, D.; Jiang, Z. Electrochem. Commun. 2007, 9, 569.  
(9) Hu, C. C.; Chang, K. H.; Lin, M. C.;Wu, Y. T. Nano Lett. 2006, 6, 2690.  
(10) Sugimoto,W.; Iwata, H.; Yokoshima, K.; Murakami, Y.; Takasu, Y. J. Phys. Chem. B 2005, 109, 7330.  
(11) Wu, Z. S.; Ren,W. C.;Wang, D.W.; Li, F.; Liu, B. L.; Cheng, H. M. ACS Nano 2010, 4, 5835.  
(12) Xia, X. H.; Tu, J. P.; Mai, Y. J.;Wang, X. L.; Gu, C. D.; Zhao, X. B. J. Mater. Chem. 2011, 21, 9319.  
(13) Cao, C. Y.; Guo.W.; Cui, Z. M.; Song,W. G.; Cai,W. J. Mater. Chem. 2011, 21, 3204.
(14) Hu, C. C.; Chen,W. C.; Chang, K. H. J. Electrochem. Soc. 2004, 151, A281.  
(15) Yu, L. Q.; Chen, S. L.; Chang, S.; Li, Y. H.; Gao, Y. Y.;Wang, G. L.; Cao, D. X. Acta Phys .-Chim. Sin. 2011, 27 (3), 615. [于丽秋, 陈书礼, 常莎, 李云虎, 高胤义, 王贵领, 曹殿学. 物理化学学报.2011, 27 (3), 615.]
(16) Wei, T. Y.;Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. Adv. Mater. 2010, 22, 347.  
(17) Gupta V.; Gupta S.; Miura N. J. Power Sources 2010, 195, 3757.  
(18) Yin,W. Y.; Chen, X.; Cao, M. H.; Hu, C.W.;Wei, B. Q. J. Phys. Chem. C. 2009, 113, 15897.  
(19) Lu, B. P.; Bai, J.; Bo, X. J.; Zhu, L. D.; Guo, L. P. Electrochim. Acta 2010, 55, 8724.  
(20) Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Adv. Funct. Mater. 2008, 18, 1441.
(21) Singh, R. N.; Koenig, J. F.; Poillerat, G.; Chartier, P. J. Electrochem. Soc. 1990, 137, 1408.  
(22) Chi, B.; Lin, H.; Li, J.;Wang, N.; Yang, J. Int. J. Hydrog. Energy 2006, 31, 1210.  
(23) Aboutalebi, S. H.; Chidembo, A. T.; Chidembo, Salari, M.; Konstantinov, K.;Wexler, D.; Liu, H. K.; Dou, S. X. Energy Environ. Sci. 2011, 4, 1855.  
(24) Meher, S. K.; Justin, P.; Rao, G. R. ACS Appl. Mater. Interfaces 2011, 3, 2063.  
(25) Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Adv. Mater. 2006, 18, 2619.  
[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[4] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[5] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[6] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[7] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[8] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[9] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[10] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 481-492.
[11] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. Chim. Sin., 2016, 32(2): 474-480.
[12] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 493-502.
[13] LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Phys. Chim. Sin., 2015, 31(4): 676-684.
[14] LI Yang, XIE Hua-Qing, LI Jing. Hydrothermal Synthesis of Al-Doped α-MnO2 Nanotubes and Their Electrochemical Performance for Supercapacitors[J]. Acta Phys. Chim. Sin., 2015, 31(4): 693-699.
[15] YANG Shuo, XU Gui-Yin, HAN Jin-Peng, BING Huan, DOU Hui, ZHANG Xiao-Gang. Nitrogen-Doped Porous Carbon Derived from Dopamine-Modified Polypyrrole and Its Electrochemical Capacitive Behavior[J]. Acta Phys. Chim. Sin., 2015, 31(4): 685-692.