Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (04): 843-849    DOI: 10.3866/PKU.WHXB201202172
Pore Structures of Carbon Aerogels and Their Effects on Electrochemical Supercapacitor Performance
LIU Dong1, SHEN Jun1, LI Ya-Jie1, LIU Nian-Ping1, LIU Bin2
1. Shanghai Key Laboratory of Special Microstructure Materials and Technology, Tongji University, Shanghai 200092, P. R. China;
2. Institute of Aerospace Special Materials and Technology, Beijing Mailbox 7203, P. R. China
Download:   PDF(1393KB) Export: BibTeX | EndNote (RIS)      

Abstract  Control of the pore structures of carbon aerogels (CAs) was investigated by changing the sol-gel polymerization and activation conditions. The morphologies and physical properties of the CAs and KOH activated carbon aerogels (ACAs) were characterized by scanning electron microscopy (SEM) and N2 adsorption isotherms. The electrochemical performances of the CAs and ACAs as electrode materials were characterized using cyclic voltammetry (CV), a galvanostatic charge-discharge test, and electrochemical impedance spectroscopy (EIS). The results showed that the well developed threedimensional nano-network structures and the reasonable pore size distributions of the CAs have great effect on their electrochemical performance in supercapacitors. Because of abundant mesopores and a high specific surface area (1480 m2·g-1), the specific capacitance of a ACA electrode in 6 mol·L-1 KOH electrolyte was approximately 216 F·g-1 at a scan rate of 100 mV·s-1. A simple model was used to investigate the role of the pores in electrochemical performance.

Key wordsCarbon aerogel      Pore structure      Supercapacitor      Electrochemical performance     
Received: 23 November 2011      Published: 17 February 2012
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (11074189) and Shanghai Committee of Science and Technology, China (11nm0501600).

Corresponding Authors: SHEN Jun     E-mail:
Cite this article:

LIU Dong, SHEN Jun, LI Ya-Jie, LIU Nian-Ping, LIU Bin. Pore Structures of Carbon Aerogels and Their Effects on Electrochemical Supercapacitor Performance. Acta Phys. Chim. Sin., 2012, 28(04): 843-849.

URL:     OR

(1) Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937.  
(2) Conway, B. E. Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications; Kluwer Academic/ Plenum Publishers: NewYork, 1999.
(3) Lu, X. J.; Dou, H.; Yang, S. D.; Hao, L.; Zhang, F.; Zhang, X. G. Acta Phys.-Chim. Sin. 2011, 27, 2333. [卢向军, 窦辉, 杨苏东, 郝亮, 张方, 张校刚. 物理化学学报, 2011, 27, 2333.]
(4) Xue, R.; Yan, J.W.; Tian, Y.; Yi, B. L. Acta Phys.- Chim. Sin. 2011, 27, 2340. [薛荣, 阎景旺, 田颖, 衣宝廉. 物理化学学报, 2011, 27, 2340.]
(5) Cai, J. J.; Kong, L.B.; Zhang, J.; Luo, Y. C.; Kang, L. Chin. Chem. Lett. 2010, 21, 1509.  
(6) Pekala, R.W.; Farmer, J. C.; Alviso, C. T.; Tran, T. D.; Mayer, S. T.; Miller, J. M.; Dunn, B. J. Non-Cryst. Solids 1998, 225, 74.  
(7) Li, J.;Wang, X. Y.;Wang, Y.; Huang, Q. H.; Dai, C. L.; Gamboa, S.; Sebastian, P. J. J. Non-Cryst. Solids 2008, 354, 19.  
(8) Saliger, R.; Fischer, U.; Herta, C.; Fricke, J. J. Non-Cryst. Solids 1998, 225, 81.  
(9) Xu, Z. J.; Ji, T.; Zhao, L.;Wang,W. Y.; Yang, C. Y.; Gan, L. H. Acta Phys.- Chim. Sin. 2012, 28, 361. [徐子颉, 吉涛, 赵蕾, 王玮衍, 杨春艳, 甘礼华. 物理化学学报, 2012, 28, 361.]
(10) Liu, Y. F.; Hu, Z. H.; Xu, K; Zheng, X.W.; Gao, Q. Acta Phys. -Chim. Sin/ 2008, 24, 1143. [刘亚菲, 胡中华, 鄢许琨, 郑祥伟, 高强. 物理化学学报, 2008, 24, 1143.]  
(11) Lin, C.; Ritter, J. A.; Popov, B. N. J. Electrochem. Soc. 1999, 146, 3639.  
(12) Wang, J. B.; Yang, X. Q.;Wu, D. C.; Fu, R.W.; Dresselhausc, M. S.; Dresselhausc, G. J. Power Sources 2008, 185, 589.  
(13) Shi, H. Electrochim. Acta 1996, 41, 1633.  
(14) Wang, J.; Chen, M. M.;Wang, C. Y.;Wang, J. Z.; Zheng, J. M. J. Power Sources 2011, 196, 550.  
(15) Zhuang, X. G.; Yang, Y. S.; Ji, Y. J.; Yang, D. P.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2003, 19, 689. [庄新国,杨裕生, 嵇友菊, 杨冬平, 唐致远. 物理化学学报, 2003, 19, 689.]
(16) Aegerter, M. A.; Leventis, N.; Koebel, M. M. Aerogels Handbook; Springer: New York, 2011; pp 813-826.
(17) Pekala, R.W. J. Mater. Sci. 1989, 24, 3221.
(18) Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760.  
(19) Kiyohara, K. J.; Sugino, T. S.; Asaka, K. J. J. Chem. Phys. 2010, 132, 144705.  
(20) Barbieri, O.; Hahn, M.; Herzog, A. Carbon 2005, 43, 1303.  
(21) Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. J. Am. Chem. Soc. 2008, 130 , 2730.  
[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[4] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[5] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[6] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[7] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[8] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[9] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[10] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[11] DAWUT Gulbahar, LU Yong, ZHAO Qing, LIANG Jing, TAO Zhan-Liang, CHEN Jun. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1593-1603.
[12] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(4): 969-974.
[13] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[14] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. Chim. Sin., 2016, 32(3): 717-722.
[15] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 481-492.