Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (05): 1223-1229    DOI: 10.3866/PKU.WHXB201202234
CATALYSIS AND SURFACE SCIENCE     
Adsorption of Low Concentration CO2 by Modified Carbon Nanotubes under Ambient Temperature
YE Qing1, ZHANG Yu1, LI Ming2, SHI Yao1
1. Institute of Industrial Ecology and Environment, Department of Chemical and Biological Engineering, Faculty of Engineering, Zhejiang University, Hangzhou 310028, P. R. China;
2. Zhejiang Shuren University, Hangzhou 310015, P. R. China
Download:   PDF(1379KB) Export: BibTeX | EndNote (RIS)      

Abstract  Solid amine adsorbents for low concentration CO2 removal were developed using carbon nanotubes (CNTs) impregnated with tetraethylenepentamine (TEPA) and triethylenetetramine (TETA). The adsorbents were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FITR), N2 adsorption/desorption, elemental analysis and thermogravimetric analysis (TGA). After impregnation, the shapes, fundamental channels and pore structures of the adsorbents were unchanged. However, the surface area and pore volume decreased. The adsorption behavior toward low concentration CO2 was investigated in a fixed-bed column. The results indicated that the adsorption capacity was enhanced substantially by modification. The CO2 adsorption capacity of CNTs-TEPA was higher than that of CNTs-TETA with the same amount of amine loading. The adsorption capacity increased steadily from 126.7 to 139.3 mg·g-1 for CNTs-TEPA and from 101.2 to 110.4 mg·g-1 for CNTs-TETA as the temperature increased from 20 to 30 ℃. The adsorption capacity of the raw CNTs experienced a modest increase, but began to decrease gradually with further temperature increases. Suyadal and Yasyerli deactivation models were applied to investigate the experimental breakthrough curves of raw and modified CNTs. It was concluded that the Yasyerli deactivation model is more appropriate to analyze the breakthrough curves of CO2 adsorption on solid amine adsorbents.

Key wordsCarbon nanotube      CO2 adsorption      Triethylenetetramine      Tetraethylenepentamine      Deactivation model     
Received: 18 October 2011      Published: 23 February 2012
MSC2000:  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (20976159).

Corresponding Authors: SHI Yao     E-mail: shiyao@zju.edu.cn
Cite this article:

YE Qing, ZHANG Yu, LI Ming, SHI Yao. Adsorption of Low Concentration CO2 by Modified Carbon Nanotubes under Ambient Temperature. Acta Phys. Chim. Sin., 2012, 28(05): 1223-1229.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201202234     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I05/1223

(1) Choi, S.; Drese, J. H.; Jones, C.W. ChemSusChem 2009, 2, 796.  
(2) Serna-Guerrero, R.; Sayari, A. Chem. Eng. J. 2010, 161, 182.  
(3) Zhang, P.; Shi, Y.;Wei, J.; Zhao,W.; Ye, Q. J. Environ. Sci. 2008, 20, 39.  
(4) Shi, J. J.; Liu, Y. M.; Chen, J.; Zhang, Y.; Shi, Y. Acta Phys.-Chim.Sin. 2010, 26 (11), 3023. [史晶金, 刘亚敏, 陈杰, 张瑜, 施耀. 物理化学学报, 2010, 26 (11), 3023.]
(5) Moloney, P.; Huffman, C.; Gorelik, O.; Nikolaev, P.; Arepalli, S.; Allada, R.; Springer, M.; Yowell, L. Advanced Life Support for Space Exploration: Air Revitalization Using Amine Coated SingleWall Carbon Nanotubes. In Materials for Space Applications, Symposium on Materials for Space Applications, Boston, USA, Nov. 29-Dec. 03.2004; Chipara, M.; Edwards, D. L.; Benson, R.S.; Phillips, S., Eds.; Materials Research Society: Warrendale, 2005; 59.
(6) Feron, P.; Jacobs, P.; Paul, P.; Savage, C.;Witt, J. Integrated CO2 and Humidity Control by Membrane Gas Absorption. In ESA Special Publications, Sixth European Symposium on Space Environmental Control Systems, Noordwijk, Netherlands, 1997, May 20-22, 1997; Guyenne, T.D., Eds.; European Space Agency: Paris, 1997; 761.
(7) Hwang, H. T.; Harale, A.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T. J.Membr.Sci. 2008, 315, 116.  
(8) Oyenekan, B. A.; Rochelle, G. T. AIChE J. 2007, 53, 3144.  
(9) Sridharab, S.; Smithab, B.;Aminabhavia,T. M. Sep.Purif. Rev. 2007, 36, 113.  
(10) Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Ind. Eng. Chem. Res. 2009, 49, 359.
(11) Wang, X.; Schwartz, V.; Clark, J. C.; Ma, X.; Overbury, S. H.; Xu, X.; Song, C. J. Phys. Chem.C 2009, 113, 7260.  
(12) Satyapal, S.; Filburn, T.; Trela, J.; Strange, J. Energy Fuels 2001, 15, 250.  
(13) Somy, A.; Mehrnia, M. R.; Amrei, H. D.; Ghanizadeh, A.; Safari, M. Int. J. Greenh.Gas Con. 2009, 3, 249.  
(14) Hsu, S.; Lu, C. Sep. Sci. Technol. 2007, 42, 2751.  
(15) Wei, J.W.; Shi, J.J.; Pan, H.; Zhao,W.; Ye, Q.; Shi, Y. Microporous Mesoporous Mat. 2008, 116, 394.  
(16) Zelenak, V.; Halamova, D.; Gaberova, L.; Bloch, E.; Llewellyn, P. Microporous Mesoporous Mat. 2008, 116, 358.  
(17) Su, F.; Lu, C.; Cnen,W.; Bai, H.; Hwang, J. F. Sci. Total Environ. 2009, 407, 3017.  
(18) Zhao, H. L.; Hu, J.;Wang, J. J.; Zhou, L. H.; Liu, H. L. Acta Phys.-Chim. Sin. 2007, 23 (6), 801. [赵会玲, 胡军, 汪建军, 周丽绘, 刘洪来. 物理化学学报, 2007, 23 (6), 801. ]
(19) Mello, M. R.; Phanon, D.; Silveira, G. Q.; Llewellyn, P. L.; Ronconi, C. M. Microporous Mesoporous Mat. 2011, 143, 174.  
(20) Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Ind. Eng. Chem. Res. 2003, 42, 2427.  
(21) Zhu, Z. Z.;Wang, Z.; Li, H. L. Appl. Surf. Sci. 2008, 254, 2934.  
(22) Krishen, K. Acta Astronaut. 2008, 63, 324.  
(23) Smart, S.; Cassady, A.; Lu, G.; Martin, D. Carbon 2006, 44, 1034.  
(24) Gommans, H. H.; Alldredge, J.W.; Tashiro, H .; Park, J.; Magnuson, J.; Rinzler, A. G. J. Appl.Phys. 2000, 88, 2509.  
(25) Chang, A. C. C.; Chuang, S. S. C.; Gray, M. M.; Soong, Y. Energy Fuels 2003, 17, 468.  
(26) Serna-Guerrero, R.; Da'na, E.; Sayari, A. Ind. Eng. Chem. Res. 2008, 47, 9406.  
(27) Danckwerts, P. V. Chem. Eng. Sci. 1979, 34, 443.  
(28) Versteeg, G. F.; van Dijck, L. A. J.; van Swaaij,W. P. M. Chem. Eng. Com. 1996, 144, 113.  
(29) Suyadal, Y.; Erol, M.; Oguz, H. Ind. Eng. Chem. Res. 2000, 39, 724.  
(30) Yasyerli, S.; Dogu, G.; Ar, I.; Dogu, T. Ind. Eng. Chem. Res. 2001, 40, 5206.  
[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[2] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[3] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[4] XIA Ji-Ye, DONG Guo-Dong, TIAN Bo-Yuan, YAN Qiu-Ping, HAN Jie, QIU Song, LI Qing-Wen, LIANG Xue-Lei, PENG Lian-Mao. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Phys. Chim. Sin., 2016, 32(4): 1029-1035.
[5] LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi. Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Phys. Chim. Sin., 2016, 32(3): 691-700.
[6] SUN Hao-Yu, PU Jin-Huan, TANG Gui-Hua. High-Performance Thermogalvanic Cell Based on Organic Nanofluids[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2555-2562.
[7] XIA Kai-Lun, JIAN Mu-Qiang, ZHANG Ying-Ying. Advances inWearable and Flexible Conductors Based on Nanocarbon Materials[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2427-2446.
[8] YANG Li-Jiang, GAO Yi-Qin. Molecular Dynamic Simulations of the Effects of Trimethylamine- N-oxide/Urea Mixture on the Hydration of Single-Walled Carbon Nanotube Interiors[J]. Acta Phys. Chim. Sin., 2016, 32(1): 313-320.
[9] GU Ze-Xing, TU Chang-Neng, WANG Yun, YANG Ji-Jun, LIU Ning, LIAO Jia-Li, YANG Yuan-You, TANG Jun. Preparation of Carbon Aerogels and Adsorption of Uranium(VI) from Aqueous Solution[J]. Acta Phys. Chim. Sin., 2015, 31(Suppl): 95-100.
[10] ZHANG Jie, DOU Mei-Ling, WANG Feng, LIU Jing-Jun, LI Zhi-Lin, JI Jing, SONG Ye. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1727-1732.
[11] SHEN Zhuang-Lin, HE Gao-Hong, ZHANG Ning, HAO Ce. Molecular Dynamics Simulation of Reverse-Osmotic Salt Rejection and Water Transport through Double-Walled Carbon Nanotube[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1025-1034.
[12] LI Li-Xiang, ZHAO Hong-Wei, XU Wei-Wei, ZHANG Yan-Qiu, AN Bai-Gang, GENG Xin. Preparation and Electrocatalytic Performance of Iron Based Nitrogen Doped Carbon Nanotubes[J]. Acta Phys. Chim. Sin., 2015, 31(3): 498-504.
[13] YE Huang-Qing, DENG Yong-Hong, YAN Yan, ZHANG Mei-Jie, QIAN Yong, QIU Xue-Qing. Influence of Soldium Lignosulfonate with Different Molecular Weights on the Dispersion of Multiwalled Carbon Nanotubes[J]. Acta Phys. Chim. Sin., 2015, 31(10): 1991-1996.
[14] LIU Fen, ZOU Jian-Wei, HU Gui-Xiang, JIANG Yong-Jun. Quantitative Structure-Property Relationship Studies on the Adsorption of Aromatic Contaminants by Carbon Nanotubes[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1616-1624.
[15] GAO Wen-Xiu, WANG Hong-Lei, LI Shen-Min. Molecular Dynamics Simulation Study of Structural and Transport Properties of Methanol-Water Mixture in Carbon Nanotubes[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1625-1633.