Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (05): 1269-1274    DOI: 10.3866/PKU.WHXB201202242
Electrochemical Indirect Measurement for the Study of Glutathione Adsorption on Multiwalled Carbon Nanotubes and Activated Carbon
TANG Jing, ZENG Qiao, CHEN Zhen-Dong, HUANG Xiang-Qian
Key Laboratory of Analysis and Detection Technology for Food Safety, Ministry of Education, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
Download:   PDF(1488KB) Export: BibTeX | EndNote (RIS)      

Abstract  Because of the chemical reaction between Cr(VI) ions and glutathione, the peak reduction current of Cr(VI) ions decreases while adding glutathione (GSH) into a K2Cr2O7/H2SO4 solution. Thus the concentration of GSH can be detected indirectly by differential pulse voltammetry (DPV) analysis. This electrochemical indirect method was used to study the adsorption of GSH on multi-walled carbon nanotubes (MWCNTs) and activated carbon (AC), and can be used to determine the equilibrium relationship between GSH adsorption and its concentration. Unlike the result obtained from the active carbon, GSH adsorption on MWCNTs agrees better with that predicted by the Freundlich equation compared to that predicted by the Langmuir equation. The morphologies of MWCNTs and activated carbon were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The abundance of aggregated pores in MWCNTs is beneficial for the diffusion and adsorption of small GSH molecules, suggesting that MWCNTs could be developed as an adsorbent for small molecular substances.

Key wordsElectrochemical indirect measurement      Glutathione      MWCNTs      Activated carbon      Adsorption mechanism     
Received: 28 November 2011      Published: 24 February 2012
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21073038, 21173048).

Corresponding Authors: TANG Jing     E-mail:
Cite this article:

TANG Jing, ZENG Qiao, CHEN Zhen-Dong, HUANG Xiang-Qian. Electrochemical Indirect Measurement for the Study of Glutathione Adsorption on Multiwalled Carbon Nanotubes and Activated Carbon. Acta Phys. -Chim. Sin., 2012, 28(05): 1269-1274.

URL:     OR

(1) Iijima, S. Nature 1991, 354, 56.  
(2) Chen, C. L.;Wang, X. K. Ind. Eng. Chem. Res. 2006, 45, 9144.  
(3) El-Sheikh, A. H.; Sweileh, J. A.; Al-Degs, Y. S. Anal. Chim. Acta 2007, 604, 119.  
(4) Hong, Y. N.; Cai, Y. Q.; Shi, Y. L.;Wei, F. S.; Liu, J. M.; Mou, S. F.; Jiang, G. B. Anal. Chim. Acta 2007, 594, 81.  
(5) Li, G. F.;Wan, J. X.; Hang, X. Q.; Zeng, Q.; Tang, J. Chin. J. Biomed. Eng. 2011, 28, 758. [李桂芬, 万建新, 黄向前, 曾峤, 汤儆. 生物医学工程学杂志, 2011, 28, 758.]
(6) Ye, C.; Gong, Q. M.; Lu, F. P.; Liang, J. Acta Phys. -Chim. Sin. 2007, 23, 1321. [叶超, 巩前明, 卢方平, 梁吉. 物理化学学报, 2007, 23, 1321.]  
(7) Jia, Z.;Wang, Z.; Liang, J.;Wei, B.;Wu, D. Carbon 1999, 37, 903.  
(8) Xiong, Z. H.;Wang, L.; Zhou, J. G.; Liu, J. M. Acta Phys. -Chim. Sin. 2010, 26, 2890. [熊振湖, 王璐, 周建国, 刘建明. 物理化学学报, 2010, 26, 2890.]
(9) Han, B.; Chen,W.;Wang. X.C.; Li, L.; Yan, H.; Li,W. X. New Carbon Mater. 2010, 25, 75. [韩博, 陈文, 王新春, 李乐, 严欢, 李文新. 新型炭材料, 2010, 25, 75.]
(10) Voet, D.; Voet, J. G. Biochemistry;Wiley: New York, 1990; pp 380-385.
(11) Chen, P.; Zhang, H. B.; Lin, G. D.; Cai, Q. R. Chem. J. Chin. Univ. 1998, 19, 765. [陈萍, 张鸿斌, 林国栋, 蔡启瑞. 高等学校化学学报1998, 19, 765.]
(12) Kitagawa, S.; Seki, H.; Kametani, F.; Sakurai, H. Inorg. Chim. Acta 1988, 152, 251.  
(13) Han, X.W.; Qu, M.; Hu, J. H.; Xu, Y. T.; Yang, K. H. Chemistry 1994, 50. [韩秀文, 屈铭, 胡皆汉, 许永庭, 杨开海. 化学通报, 1994, 50.]  
(14) Mah, V.; Jalilehvand, F. Chem. Res. Toxicol. 2010, 23, 1815.  
(15) Podanyi, B.; Rrid, R. S. J. Am. Chem. Soc. 1988, 110, 3805.  
(16) Yang, P. H.; Zhang,W. H.; Zhao, Q. X.; Cai, J. Y. Chin. J. Inorg. Chem. 2005, 21, 495. [杨培慧, 张文豪, 赵秋香, 蔡继业. 无机化学学报, 2005, 21, 495.]
(17) George, L. E. Arch. Biochem. Biophys. 1959, 82, 70.  
(18) Ba, N. T.; Roll, F. J. Anal. Biochem. 1989, 179, 236.  
(19) Yang, Q. H.; Hou, P. X.; Bai, S.;Wang, M. Z.; Cheng, H. M. Chem. Phys. Lett. 2001, 345, 18.  
(20) Ye, C.; Gong, Q. M.; Lu, F. P.; Liang, J. Sep. Purif. Technol. 2007, 58, 2.  
(21) Lu, C.; Chung, Y. L.; Chang, K. F. Water Res. 2005, 39, 1184.
(22) Negi, A. S.; Anand, S. C. A Textbook of Physical Chemistry; Wiley Eastern: New York, 1985; pp 724-728.  
[1] Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 787-794.
[2] Jin-Ling YIN,Jia LIU,Qing WEN,Gui-Ling WANG,Dian-Xue CAO. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 370-376.
[3] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2245-2252.
[4] Yuan JIAN,Wan-Jun MU,Ning LIU,Shu-Ming PENG. Removal of Sr2+ Ions by Ta-Doped Hexagonal WO3: Zeta Potential Measurements and Adsorption Mechanism Determination[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2052-2058.
[5] Yong-Fang WANG,Song-Lin ZUO. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 481-492.
[6] Ya-Jie LI,Xing-Yuan NI,Jun SHEN,Dong LIU,Nian-Ping LIU,Xiao-Wei ZHOU. Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 493-502.
[7] TONG Li, XU Wen-Qing, QI Hao, ZHOU Xuan, LIU Rui-Hui, ZHU Ting-Yu. Enhanced Effect of O/N Groups on the Hg0 Removal Efficiency over the HNO3-Modified Activated Carbon[J]. Acta Phys. -Chim. Sin., 2015, 31(3): 512-518.
[8] Jie-Yang. YANG,Zhang-Gen. HUANG,Xiao-Jin. HAN,Wen. JING,Ze-Quan. ZENG. Effect of Activated Carbon Pore Structure on the Adsorption of Pb(II) from Aqueous Solution[J]. Acta Phys. -Chim. Sin., 2015, 31(10): 1956-1962.
[9] XIAO Bo, LIU Shou-Qing. Photocatalytic Oxidation of Ammonia via an Activated Carbon-Nickel Ferrite Hybrid Catalyst under Visible Light Irradiation[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1697-1705.
[10] SUN Xian-Zhong, HUANG Bo, ZHANG Xiong, ZHANG Da-Cheng, ZHANG Hai-Tao, MA Yan-Wei. Experimental Investigation of Electrochemical Impedance Spectroscopy of Electrical Double Layer Capacitor[J]. Acta Phys. -Chim. Sin., 2014, 30(11): 2071-2076.
[11] HUANG Bo, SUN Xian-Zhong, ZHANG Xiong, ZHANG Da-Cheng, MA Yan-Wei. Organic Electrolytes for Activated Carbon-Based Supercapacitors with Flexible Package[J]. Acta Phys. -Chim. Sin., 2013, 29(09): 1998-2004.
[12] JIN Wei-Yang, CHENG Dang-Guo, CHEN Feng-Qiu, ZHAN Xiao-Li. Synthesis of MFI-Type Zeolite Membrane Encapsulated Activated Carbon Particles Using a Modified Seeded Method[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 139-143.
[13] ZhONG Hao-Xiang, ZHAO Chun-Bao, LUO Hao, ZHANG Ling-Zhi. Novel Organosilicon Ionic Liquid Based Electrolytes for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2012, 28(11): 2641-2647.
[14] PING Li-Na, ZHENG Jia-Ming, SHI Zhi-Qiang, WANG Cheng-Yang. Electrochemical Performance of Lithium Ion Capacitors Using Li+-Intercalated Mesocarbon Microbeads as the Negative Electrode[J]. Acta Phys. -Chim. Sin., 2012, 28(07): 1733-1738.
[15] SUN Xian-Zhong, ZHANG Xiong, ZHANG Da-Cheng, MA Yan-Wei. Activated Carbon-Based Supercapacitors Using Li2SO4 Aqueous Electrolyte[J]. Acta Phys. -Chim. Sin., 2012, 28(02): 367-372.