Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (06): 1545-1550    DOI: 10.3866/PKU.WHXB201203026
PHYSICAL CHEMISTRY OF MATERIALS     
Preparation of an Ultrahigh Aspect Ratio Anodic Aluminum Oxide Template for the Fabrication of Ni Nanowire Arrays
ZHANG Hua, HU Yao-Juan, WU Ping, ZHANG Hui, CAI Chen-Xin
Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, P. R. China
Download:   PDF(1217KB) Export: BibTeX | EndNote (RIS)      

Abstract  This work reports a two-step constant-current anodization approach for the fabrication of an anodic aluminum oxide (AAO) template having an aspect ratio>1000. The effects of oxidation current densities and oxidation time on the morphologies, pore size, and thickness of AAO templates were studied. The results indicated that the morphology and thickness were significantly affected by both the oxidation time and the oxidation current density. High-quality AAO templates with 150-200 nm pore sizes, 200 μm thicknesses, and 1000-1300 aspect ratios could be prepared under a constant-current density of 8 mA?cm-2 and an oxidation time of 18 h. Using the AAO template, Ni nanowire arrays were fabricated by electrochemical deposition and were characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) techniques. The Ni nanowire arrays were parallel to each other, with diameters of 150 nm, lengths of 180-200 μm, and aspect ratios of 1200-1300. These parameters compared favorably with those of the AAO template, thus indicating that it can be used for preparation of one-dimensional nanowire arrays with an ultrahigh aspect ratio. The effects of the aspect ratios on the magnetic characteristics of the Ni nanowire arrays were examined by comparing their coercivities and remanence ratios in parallel and perpendicular directions, respectively. The results indicated that Ni nanowire arrays with an aspect ratio >1000 clearly displayed a magnetic anisotropy, while the arrays with an aspect ratio of 200 did not. Thus an AAO template with an ultrahigh aspect ratio can be fabricated using a two-step constant-current anodization method, and that the AAO template may find applications in the fabrication of one-dimensional, high-aspect ratio nanowire arrays with special optical and magnetic properties.

Key wordsAnodic aluminum oxide template      One-dimensional nanomaterial      Ni nanowire array      Two-step constant-current oxidation      Electrochemical deposition     
Received: 16 December 2011      Published: 02 March 2012
MSC2000:  O648  
Fund:  

The project was supported by the National Natural Science Foundation of China (20905036, 21175067), Research Fund for the Doctoral Program of Higher Education of China (20103207110004), Natural Science Foundation of Jiangsu Province, China (BK2011779), Foundation of the Jiangsu Education Committee, China (09KJA150001, 09KJB150006, 10KJB150009), Program for Outstanding Innovation Research Team of Universities in Jiangsu Province, China, and Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Corresponding Authors: WU Ping     E-mail: wuping@njnu.edu.cn
Cite this article:

ZHANG Hua, HU Yao-Juan, WU Ping, ZHANG Hui, CAI Chen-Xin. Preparation of an Ultrahigh Aspect Ratio Anodic Aluminum Oxide Template for the Fabrication of Ni Nanowire Arrays. Acta Phys. Chim. Sin., 2012, 28(06): 1545-1550.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201203026     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I06/1545

(1) Xu, S.; Adiga, N.; Ba, S.; Dasgupta, T.; Wu, C. F. J.; Wang, Z. L. ACS Nano 2009, 3, 1803.  
(2) Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor, G. K.; Feng, X. J.; Paulose, M.; Seabold, J. A.; Choi, K. S.; Grimes, C. A. J. Phys. Chem. C 2009, 113, 6327.  
(3) Zeeshan, M. A.; Shou, K.; Pané, S.; Pellicer, E.; Sort, J.; Sivaraman, K. M.; Baró, M. D.; Nelson, B. J. Nanotechnology 2011, 22, 275713.  
(4) Shi, J. B.; Chen, Y. C.; Lee, C. W.; Lin, Y. T.; Wu, C.; Chen, C. J. Mater. Lett. 2008, 62, 15.  
(5) Guo, S. J.; Dong, S. J.; Wang, E. K. Chem. Commun. 2010, 46, 1869.  
(6) Cheng, F. L.; Dai, X. C.; Wang, H.; Jiang, S. P.; Zhang, M.; Xu, C. W. Electrochim. Acta 2010, 55, 2295.  
(7) Cheng, D.; Hou, M. Eur. Phys. J. B 2010, 74, 379.  
(8) Goodey, A. P.; Eichfeld, S. M.; Lew, K. K.; Redwing, J. M.; Mallouk, T. E. J. Am. Chem. Soc. 2007, 129, 12344.  
(9) Cai, C. X.; Chen, J. Acta Chim. Sin. 2004, 62, 335. [蔡称心, 陈静. 化学学报, 2004, 62, 335.]
(10) Du, P.; Shi, Y. M.; Wu, P.; Zhou, Y. M.; Cai, C. X. Acta Chim. Sin. 2007, 65, 1. [杜攀, 石彦茂, 吴萍, 周耀明, 蔡称心. 化学学报, 2007, 65, 1.]
(11) Lü, Y. F.; Cai, C. X. Acta Chim. Sin. 2006, 64, 2396. [吕亚芬, 蔡称心. 化学学报, 2006, 64, 2396.]
(12) Meng, L.; Yang, L. G.; Zhou, B.; Cai, C. X. Nanotechnology 2009, 20, 035502.  
(13) Xia, Y. N.; Yang, P. D.; Sun, T. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, H. Q. Adv. Mater. 2003, 15, 353.  
(14) Lü, Y. F.; Yin, Y. J.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2007, 23, 5. [吕亚芬, 印亚静, 吴萍, 蔡称心. 物理化学学报, 2007, 23, 5.]  
(15) Zhang, S. Y.; Li, W. Y.; Li, C. S.; Chen, J. J. Phys. Chem. B 2006, 110, 24855.  
(16) Boyle, T. J.; Coker, E. N.; Zechmann, C. A.; Voigt, J. V.; Rodriguez, M. A.; Kemp, R. A. Chem. Mater. 2003, 15, 305.  
(17) Morales, A. M.; Lieber, C. M. Science 1998, 279, 208.  
(18) Landoulsi, J.; Demoustier-Champagne, S.; Dupont-Gillain, C. Soft Matter 2011, 7, 3337.  
(19) Zhao, M.; Wu, X. M.; Cai, C. X. J. Phys. Chem. C 2009, 113, 4987.  
(20) Wang, M. H.; Li, Y. J.; Xie, Z. X.; Liu, C.; Yeung, E. S. Mater. Chem. Phys. 2010, 119, 153.  
(21) Wang, Z. Y.; Liu, S. N.; Wu, P.; Cai, C. X. Anal. Chem. 2009, 81, 1638.  
(22) Shi, Y. M.; Zhou, B.; Wu, P.; Wang, K. Y.; Cai, C. X. J. Eelectroanal. Chem. 2007, 611, 1.  
(23) Masuda, H.; Fukuda, K. Science 1995, 268, 1466.  
(24) Hulteen, J. C.; Martin, C. R. J. Mater. Chem. 1997, 7, 1075.  
(25) Cepak, V. M.; Martin, C. R. Chem. Mater. 1999, 11, 1363.  
(26) Sapp, S. A.; Mitchell, D. T.; Martin, C. R. Chem. Mater. 1999, 11, 1183.  
(27) Yang, C. M.; Sheu, H. S.; Chao, K. J. Adv. Funct. Mater. 2002, 12, 143.  
(28) Lee, K. B.; Lee, S. M.; Cheon, J. Adv. Mater. 2001, 13, 517.  
(29) Gai, P. L.; Harmer, M. A. Nano Lett. 2002, 2, 771.  
(30) Jana, N. R.; Gearheart, L.; Murphy, C. T. Chem. Commun. 2001, 617.
(31) Juárez, J.; Cambón, A.; Topete, A.; Taboada, P.; Mosquera, V. Chem. Eur. J. 2011, 17, 7366.  
(32) Choi, M. K.; Yoon, H.; Lee, K.; Shim, K. Langmuir 2011, 27, 2132.  
(33) Nieisch, K.; Wehrspohn, R. B.; Barthel, J.; Kirschner, J.; Gosele, U.; Fischer, S. F.; Kronmüller, H. Appl. Phys. Lett. 2001, 79, 1360.  
(34) Jessensky, O.; Muller, F.; Gosele, U. Appl. Phys. Lett. 1998, 72, 1173.  
(35) Tu, J. P.; Jiang, C. X.; Guo, S. Y.; Fu, M. F. Mater. Sci. Eng. A 2005, 398, 241.  
(36) Wang, H.; Yi, H.; Wang, H. Appl. Surf. Sci. 2005, 252, 1662.  
(37) Hua, Z. H.; Chen, R. S.; Li, C. L.; Yang, S. G.; Lu, M.; Gu, B. X.; Du, Y. W. J. Alloy. Compd. 2007, 427, 199.  
(38) Tu, J. P.; Jiang, C. X.; Guo, S. Y.; Zhao, X. B.; Fu, M. F. Wear 2005, 259, 759.  
(39) Zhang, K.; Yue, Q. L.; Chen, G. F.; Zhai, Y. L.; Wang, L.; Wang, H. S.; Zhao, J. S.; Liu, J. F.; Jia, J. B.; Li, H. B. J. Phys. Chem. C 2011, 115, 379.  
(40) Jiang, Q.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun, G. Q. J. Phys. Chem. C 2010, 114, 19714.  
(41) Nielsch, K.; Wehrspohn, R. B.; Barthel, J.; Kirschner, J.; Gosele,U.; Ficher, S. F.; Kronmuller, H. Appl. Phys. Lett. 2001, 79, 1360.  
(42) Ounadjela, K.; Ferré, R.; Louail, L.; George, J. M.; Maurice, J. L. J. Appl. Phys. 1997, 81, 5455.  
(43) Skomski, R.; Zeng, H.; Zheng, M.; Sellmyer, D. J. Phys. Rev. B 2000, 62, 3900.
[1] JIANG Chun-Xiang, HU Yu-Xiang, DONG Wen, ZHENG Fen-Gang, SU Xiao-Dong, FANG Liang, SHEN Ming-Rong. Bias-Determined Cu2O and Cu Growth on TiO2 Surface and Their Photoelectrochemical Properties[J]. Acta Phys. Chim. Sin., 2014, 30(10): 1867-1875.
[2] SUN Bao, HAO Yan-Zhong, GUO Fen, LI Ying-Pin, LUO Chong, PEI Juan, SHEN Shi-Gang. Photoelectrochemical Properties of CdS/ZnO Shell-Core Nanorod Arrays Modified with P3HT[J]. Acta Phys. Chim. Sin., 2012, 28(12): 2861-2866.
[3] LI Xue-Fei, ZHAO Yun, JIAO Qing-Ze, LI Han-Sheng, WU Hong-Yu, LIU Hong-Bo, CUI Wen-Jia. Preparation of One-Dimensional Titanate Nanomaterials Using Different Titania Sources[J]. Acta Phys. Chim. Sin., 2011, 27(08): 1996-2000.
[4] HE Zheng-Wen, JIANG Qi, YANG Rong, QI Peng, ZHAO Fei, YUAN Hua, ZHAO Yong. Preparation of Carbon Nanotube Chemically Modified Electrode via Growing In situ Method by the Direct Current Electrochemical Deposition Nickel Catalyst[J]. Acta Phys. Chim. Sin., 2010, 26(05): 1214-1218.
[5] MA Shan-Shan, ZHANG Ying-Jiu, HU Xiao-Yang, CHENG Liang, ZHOU Hui-Hua, TIAN Yong-Tao, LI Xin-Jian, ZHU Jing. Surface-Enhanced Raman Spectrum and Preparation of One-Dimensional Copper(Core)-Nickel(Shell) Nanostructure[J]. Acta Phys. Chim. Sin., 2009, 25(07): 1337-1341.
[6] YAO Hui-Jun; LIU Jie; DUAN Jing-Lai; HOU Ming-Dong; SUN You-Mei; MO Dan; CHEN Yan-Feng; XUE Zhi-Hao. Preparation of Silver Nanowires in Ion-trackMembranes[J]. Acta Phys. Chim. Sin., 2007, 23(04): 489-492.
[7] HU Ren;SHI Hai-Yan;LIN Li-Wen;ZHUANG Yan-Yan;LIN Chang-Jian. The Crystal Growth Behavior of Hydroxyapatite Coating on Titanium Substrate under Electrochemical Deposition Conditions[J]. Acta Phys. Chim. Sin., 2005, 21(02): 197-201.
[8] Jia Chong;Jin Chuan-Gui;Liu Wei-Feng;Cai Wei-Li;Yao Lian-Zeng;Li Xiao-Guang. Fabrication of Sb Single-crystal Nanowire Arrays[J]. Acta Phys. Chim. Sin., 2004, 20(03): 240-243.
[9] Wang Hong-Zhi;Yao Su-Wei;Xing Dong-Mei;Zhang Wei-Guo. Preparation, Characterization and the Study of the Thermal Strain of Ni-W Gradient Deposits with Nanostructure[J]. Acta Phys. Chim. Sin., 2002, 18(11): 1029-1032.
[10] Zhang Fen-Fen;Wu Xia-Qin;Meng Xiao-Yun;Guo Xiao-Ming;Zhang Zong-Rang. Electrochemical Impedance Spectra of Prussian Blue Film Modified Platinum Electrode[J]. Acta Phys. Chim. Sin., 2001, 17(09): 788-791.