Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (05): 1101-1106    DOI: 10.3866/PKU.WHXB201203054
A DFT Study of Methane Adsorption on Nitrogen-Containing Organic Heterocycles
JIANG Qian1, CHU Wei1, SUN Wen-Jing1, LIU Feng-Si1, XUE Ying2
1. Department of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China;
2. Department of Chemistry, Sichuan University, Chengdu 610064, P. R. China
Download:   PDF(1270KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  In coal, nitrogen exists in a variety of forms. We presented 11 compounds of different hybridization forms and nitrogen contents. Density functional theory (DFT) simulation method was employed to study the adsorption behaviors of methane on these nitrogen-containing organic compounds. The interactions were studied and characterized by their adsorption energies, Mulliken charges and electrostatic potential surfaces. The adsorption energies varied from 3.81 to 6.82 kJ·mol-1, attributable to the weak hydrogen-bonding and electrostatic interactions. The results revealed that the adsorption energy of sp2-N with methane was higher than that of sp3-N and that higher nitrogen contents provided more positive sites for methane adsorption.

Key wordsMethane      Adsorption      Nitrogen-containing compound      Density functional theory simulation method     
Received: 05 January 2012      Published: 05 March 2012
MSC2000:  O641  

The project was supported by the National Key Basic Research Program of China (973) (2011CB201202).

Corresponding Authors: CHU Wei, SUN Wen-Jing     E-mail:;
Cite this article:

JIANG Qian, CHU Wei, SUN Wen-Jing, LIU Feng-Si, XUE Ying. A DFT Study of Methane Adsorption on Nitrogen-Containing Organic Heterocycles. Acta Phys. -Chim. Sin., 2012, 28(05): 1101-1106.

URL:     OR

(1) Hamelinck, C. N.; Faaij, A. P. C.; Turkenburg, W. C.; van Bergen, F.; Pagnier, H. J. M.; Barzandji, O. H. M.; Wolf, K. H. A. A.; Ruijg, G. J. Energy 2002, 27, 647.  
(2) Yu, H. G.; Zhou, G. Z.; Fan, W. T.; Ye, H. P. Int. J. Coal. Geol. 2007, 71, 345.  
(3) Wei, X. R.; Wang, G. X.; Massarotto, P.; Golding, S. D.; Rudolph, V. Chem. Eng. Sci. 2007, 62, 4193.  
(4) Van Bergen, F.; Gale, J.; Damen, K. J.; Wildenborg, A. F. B. Energy 2004, 29, 1611.  
(5) Van Bergen, F.; Pagnier, H. J. M.; Krooss, B. M.; Van Der Meer, L. G. H. Greenhouse Gas Control Technologies 2001, 555.  
(6) Skhonde, M. P.; Strydom, C. A.; Bunt, J. R.; Schobert, H. H. J. Anal. Appl. Pyrol. 2011, 91, 205.  
(7) Kurniawan, Y.; Bhatia, S. K.; Rudolph, V. AICHE J. 2006, 52, 957.  
(8) Liu, Y. Y.; Wilcox, J. Environ. Sci. Technol. 2011, 45, 809.  
(9) Jiang, W. P.; Cui, Y. J.; Zhang, Q.; Zhong, L. W.; Li, Y. H.; Journal of China Coal Society 2007, 32, 292.
(10) Jiang, W. P. China Coalbed Methane 2009, 6, 19.
(11) Meng, H. P.; Zhao, W.; Zhang, R. G.; Wang, B. J. Coal Conversion 2008, 31, 31.
(12) Knicker, H.; Hatcher, P. G.; Scaroni, A. W. International Journal of Coal Geology 1996, 32, 255.  
(13) Wu, D. S.; Lei, J.; Zheng, B. S.; Tang, X. Y.; Wang, M. S.; Hu, J.; Li, S. H.; Wang, B. B.; Finkelman, R. B. Chin. J. Geochem. 2011, 30, 248.  
(14) Burchill, P.; Welch, L.S. Fuel 1989, 68, 100.  
(15) Boudou, J.; Schimmelmann, A.; Ader, M.; Mastalerz, M.; Sebilo, M.; Gengembre, L. Geochim Cosmochim Ac 2008, 72, 1199.  
(16) Valentim, B.; Guedes, A.; Rodrigues, S.; Flores, D. International Journal of Coal Geology 2011, 86, 291.  
(17) Perdew, J. P. ; Levy, M. Phys. Rev. B 1997, 56, 16021.  
(18) Sun, W. J.; Chu, W.; Yu, L. J.; Jiang, C. F. Chin. J Chem. Phys. 2010, 23, 175.  
(19) Zhang, X.; Chu, W.; Chen, J. J.; Dai, X. Y. Acta Phys. -Chim. Sin. 2009, 23, 451. [张旭, 储伟, 陈建钧, 戴晓雁. 物理化学学报, 2009, 23, 451.]
(20) Wang, Z. Q.; Sun, W. J.; Chu, W.; Yu, L. J. Acta Phys. -Chim.Sin. 2011, 27, 322. [王志强, 孙文晶, 储伟, 余良军. 物理化学学报, 2011, 27, 322.]
(21) Delley, B. J. Chem. Phys. 1990, 92, 508.
(22) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A. ; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.  
(23) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865.  
(24) Vogiatzis, K. D.; Mavrandonakis, A.; Klopper, W.; Froudakis, G. E. ChemPhysChem 2009, 10, 374.  
(25) Thierfelder, C.; Witte, M.; Blankenburg, S.; Rauls, E.; Schmidt, W. G. Surf. Sci. 2011, 605, 746.  
(26) Mullins, O. C.; Kirtley, S. M.; Elp, J. V.; Cramer, S. P. Applied Spectroscopy 1993, 47, 1268.  
(27) Deng, D.; Pan, X.; Yu, L. ; Cui, Y.; Jiang, Y.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X.; Xue, Q.; Sun, G.; Bao, X. Chem. Mater. 2011, 23, 1188.  
[1] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[2] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[3] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 213-218.
[4] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[5] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[6] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[7] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[8] Fang-Fang ZHENG,Qian LI,Hong ZHANG,Wei-Zheng WENG,Xiao-Dong YI,Yan-Ping ZHENG,Chuan-Jing HUANG,Hui-Lin WAN. Preparation and Characterization of Sinter-Resistant Rh-Sm2O3/SiO2 Catalyst and Its Performance for Partial Oxidation of Methane to Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1689-1698.
[9] Jing-Wei LIU,Na-Ting YANG,Yan ZHU. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1453-1461.
[10] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[11] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[12] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[13] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[14] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2013-2021.
[15] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2029-2034.