Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (05): 1177-1182    DOI: 10.3866/PKU.WHXB201203092
ELECTROCHEMISTRY AND NEW ENERGY     
Doping-Coating Surface Modification of Spinel LiMn2O4 Cathode Material with Al3+ for Lithium-Ion Batteries
XIONG Li-Long, XU You-Long, ZHANG Cheng, TAO Tao
International Center for Dielectric Research, Electronic Material Research Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
Download:   PDF(998KB) Export: BibTeX | EndNote (RIS)      

Abstract  A doping-coating surface modification method was used to improve the cycle performance of the lithium-ion battery cathode material spinel LiMn2O4. Al was chosen as the doping element and Al(NO3)3 as the raw material. We investigated Al3+ doping of 7.1%(atomic fraction) at the temperatures of 300, 400, 500, 600, 700, 750, and 800 °C. It was found that at increasing temperatures, the maximum specific capacity of the modified samples first increased and then decreased, with a maximum at 700 °C. The fading rate increased initially with temperature as well, and then decreased, followed by a small rise with temperature. This is because the coated layer gradually reacted with the LiMn2O4 granule at elevated temperatures and became a completely solid solution layer by 750 °C. The fading rate reached the minimum at the same time. Subsequently, the solid solution layer diffused into the LiMn2O4 granule, weakening the granule protection so that the fading rate slightly increased. Among these samples, the maximum specific capacity (133.6 mAh·g-1) was for the sample treated at 700 °C for 5 h, and the fading rate was 3.4% after 50 cycles. It is shown that doping-coating surface modification with Al3+ may enable the commercial application of spinel LiMn2O4 cathode material for lithium-ion batteries.

Key wordsLithium-ion battery      Cathode material      Spinel LiMn2O4      Doping-coating surface modification      Solid solution     
Received: 26 December 2011      Published: 09 March 2012
MSC2000:  O646  
  TM911  
Corresponding Authors: XU You-Long     E-mail: ylxuxjtu@mail.xjtu.edu.cn
Cite this article:

XIONG Li-Long, XU You-Long, ZHANG Cheng, TAO Tao. Doping-Coating Surface Modification of Spinel LiMn2O4 Cathode Material with Al3+ for Lithium-Ion Batteries. Acta Phys. Chim. Sin., 2012, 28(05): 1177-1182.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201203092     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I05/1177

(1) Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J.B. Mat. Res. Bull.1983, 18, 461.  
(2) Kim, J.; Manthiram, A. Nature 1997, 390, 265.  
(3) Tarascon, J.M.; Armand, M. Nature 2001, 414, 359.  
(4) Tanaka, T.; Ohta, K.; Arai, N. J. Power Sources 2001, 2, 97.
(5) Xia, Y.; Yoshio, M. J. Electrochem. Soc. 1996, 143, 825.  
(6) An, H. L.; Wu, N. N.; Lei, X. L.; Xu, J. L.; Qi, L. Acta Phys. -Chim. Sin. 2007, 23, 60. [安洪力, 吴宁宁, 雷向利, 徐金龙, 其鲁, 物理化学学报, 2007, 23, 60.]
(7) Wang, J.; Li, T., Qi, L. Acta Phys. -Chim. Sin. 2007, 23, 75. [王剑, 李桐进, 其鲁, 物理化学学报, 2007, 23, 75.]
(8) Katakura, K.; Wada, K.; Kajiki, Y.; Yamamoto, A.; Ogumi, Z. J. Power Sources 2009, 189, 240.  
(9) Jiang, C. H.; Dou, S. X.; Liu, H. K.; M. Ichihara, Zhou, H. S. J. Power Sources 2007, 172, 410.  
(10) Xia, Y.; Zhou, Y.; Yoshio, M. J. Electrochem. Soc. 1997, 144, 2593.  
(11) Jang, D. H.; Oh, S. M. J. Electrochem. Soc. 1997, 144, 3342.  
(12) Moon, H. S.; Park, J. W. J. Power Sources 2003, 119-121, 717.
(13) Shi, S.; Ouyang, C.; Wang, D. S.; Chen, L.; Huang, X. Solid State Commun. 2003, 126, 531.  
(14) Tang, Z. Y.; Fan, X. H.; Zhang, N. Acta Phys. -Chim. Sin. 2005, 21, 934. [唐致远, 范星河, 张娜, 物理化学学报, 2005, 21, 934.]
(15) Tang, Z. Y.; Feng, J. J. Acta Phys. -Chim. Sin. 2003, 19, 1025. [唐致远, 冯季军, 物理化学学报, 2003, 19, 1025.]
(16) Xiong, L. L.; Xu, Y. L.; Zhang, C.; Zhang, Z. W.; Li, J. B. J. Solid State Electrochem. 2011, 15, 1263.  
(17) Xiong, L. L.; Xu, Y. L.; Tao, T.; Goodenough J.B. J. Power Sources 2012, 199, 214.  
(18) Raja, M. W.; Mahanty, S.; Basu, R. N. J. Power Sources 2009, 192, 618.  
(19) Yuan, A.; Tian, L.; Xu, W.; Wang, Y. J. Power Sources 2010, 195, 5032.  
(20) Matsumoto, K.; Fukutsuka, T.; Okumura. T.; Uchimoto, Y.; Amezawa, K.; Inaba, M.; Tasaka, A. J. Power Sources 2009, 189, 599.  
(21) Ouyang, C. Y.; Zeng, X. M.; Sljivancanin, Z. J. Phys. Chem. C 2010, 114, 4756.  
(22) Gnanaraj, J. S.; Pol, V. G.; Gedanken, A.; Aurbach, D. Electrochem. Commun. 2003, 5, 940.  
(23) Walz, K. A.; Johnson, C. S.; Genthe, J.; Stoiber, L. C.; Zeltner, W. A.; Anderson, M. A.; Thackeray, M. M. J. Power Sources 2010, 195, 4943.  
(24) Li, X. F.; Xu, Y. L. Appl. Surf. Sci. 2007, 253, 8592.  
(25) Li, X. F.; Xu, Y. L. Electrochem. Commun. 2007, 9, 2023.  
(26) Xu, Y. L.; Li, X. F.; Ge, L. P. Appl. Surf. Sci. 2007, 253, 8453.  
(27) Xiong, L. L.; Xu, Y. L.; Tao, T.; Du, X. F.; Li, J. B. J. Mater. Chem. 2011, 13, 4937.
(28) Yi, T. F.; Hu, X. G.; Gao, K. J. Power Sources 2006, 162, 636.  
(29) Thirunakaran, R.; Sivashanmugam, A.; Gopukumar, S.; Dunnill, C. W.; Gregory, D. H. J. Phys. Chem. Solids 2008, 69, 2082.  
(30) Xiao, L.; Zhao, Y.; Yang, Y.; Cao, Y. Electrochim. Acta 2008, 54, 545.  
[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[5] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[6] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[7] JING Tao, DAI Ying. Development of Solid Solution Photocatalytic Materials[J]. Acta Phys. Chim. Sin., 2017, 33(2): 295-304.
[8] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[9] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[10] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[11] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(1): 211-241.
[12] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[13] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.
[14] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1866-1879.
[15] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.