Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (06): 1520-1524    DOI: 10.3866/PKU.WHXB201203131
Cell Biocompatibility of Functionalized Graphene Oxide
ZHANG Xiao1,2, YANG Rong2, WANG Chen2, HENG Cheng-Lin1
1. Key Laboratory of Cluster Science of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China;
2. Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
Download:   PDF(910KB) Export: BibTeX | EndNote (RIS)      

Abstract  We report on synthesis of nanoscale graphene oxide (NGO) by modified Hummers’method. Synthesized NGO particles were surface functionalized by attaching carboxylic acid and polyethylene glycol groups to render them soluble in cell culture medium. The structures and properties of functionalized NGO were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and zeta potential analyzer. Cell viability studies show that PEG-modified NGO particles are highly soluble and incur almost no cytotoxicity to A549 cells, which suggest a great potential for the use of NGO in various biomedical applications.

Key wordsGraphene oxide      Nanomaterials      Biocompatibility      Surface functionalization     
Received: 25 November 2011      Published: 13 March 2012
MSC2000:  O645  

The project was supported by the National Natural Science Foundation of China (20911130229, 21073047) and Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences, China (KJCX2.YW.M15).

Corresponding Authors: YANG Rong, HENG Cheng-Lin     E-mail:;
Cite this article:

ZHANG Xiao, YANG Rong, WANG Chen, HENG Cheng-Lin. Cell Biocompatibility of Functionalized Graphene Oxide. Acta Phys. Chim. Sin., 2012, 28(06): 1520-1524.

URL:     OR

(1) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.  10.1038/nmat1849
(2) Rozhkov, A. V.; Giavaras, G.; Bliokh, Y. P.; Freilikher, V.; Nori, F. Phys. Rep. 2011, 503, 77.  10.1016/j.physrep.2011.02.002
(3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  10.1126/science.1102896
(4) Xu, D.; Zhou, N. L.; Shen, J. Chem. J. Chin. U. 2010, 31 (12), 2354. [徐东, 周宁琳, 沈健. 高等学校化学学报, 2010, 31 (12), 2354.]
(5) Gu, X. G.; Yang, G.; Zhang, G. X.; Zhang, D. Q.; Zhu, D. B. ACS Appl. Mat. Interfaces 2011, 3, 1175.  10.1021/am2000104
(6) Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535.
(7) Zhang, Q.; He, Y. Q.; Chen, X. G.; Hu, D. H.; Li, L. L.; Yi, T. Chin. Sci. Bull. 2010, 55, 620. [张琼, 贺蕴秋, 陈小刚, 胡栋虎, 李林江, 尹婷. 科学通报, 2010, 55, 620.]
(8) Liu, Y.; Yu, D. S.; Zeng, C.; Miao Z. C.; Dai, L. M. Langmuir 2010, 26, 6158.  10.1021/la100886x
(9) Yan, X. B.; Chen, J. T.; Yang, J.; Xue, Q. J.; Miele, P. ACS Appl. Mat. Interfaces 2010, 2, 2521.  10.1021/am100293r
(10) Zhang, L. M.; Xia, J. G.; Zhao, Q. H.; Zhang, Z. J. Small 2010, 4, 537.
(11) Yang, X. Y.; Zhang, X. Y.; Liu, Z. F.; Ma, Y. F.; Huang, Y.; Chen, Y. S. J. Phys. Chem. C 2008, 112, 17554.  10.1021/jp806751k
(12) Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Nano Lett. 2010, 10, 3318.  10.1021/nl100996u
(13) Chang, Y. L.; Yang, S. T.; Liu, J. H.; Dong, E.; Wang, Y. W.; Cao, A.; Liu, Y. F.; Wang, H. F. Toxicol. Lett. 2011, 200, 201.  10.1016/j.toxlet.2010.11.016
(14) Zhang, S.; Yang, K.; Feng, L. Z.; Liu, Z. Carbon, 2011, 49, 4040.  10.1016/j.carbon.2011.05.056
(15) Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Nature 2007, 448, 457.  10.1038/nature06016
(16) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.  10.1038/nature04969
(17) Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101.  10.1038/nnano.2007.451
(18) Hummers, Jr. W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.  10.1021/ja01539a017
(19)Hermanson, G. T. Bioconjugate techniques. book/9780123705013
(20) Fan, X. B.; Peng, W. C.; Li, Y.; Li, X. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Adv. Mater 2008, 20, 4490.  10.1002/adma.200801306
(21) Rana, V. K.; Choi, M. C.; Kong, J. Y.; Kim, G. Y.; Kim, M. J.; Kim, S. H.; Mishra, S.; Singh, R. P.; Ha, C. S. Macromol. Mater. Eng. 2011, 296,131.  10.1002/mame.201000307
(22) Wang, G. X; Wang, B.; Park, J.; Yang, J.; Shen, X. P.; Yao, J. Carbon 2009, 47, 68.  10.1016/j.carbon.2008.09.002
(23) Shan, C. S.; Yang, H. F.; Han, D. X.; Zhang, Q. X.; Ivaska, A.; Niu, L. Langmuir 2009, 25, 12030.  10.1021/la903265p
(24) Si, Y. C.; Samulski, E. T. Nano Lett. 2008, 8, 1679.  10.1021/nl080604h
(25) Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. J. Am. Chem. Soc. 2008, 130, 10876.  10.1021/ja803688x
(26) Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano Res. 2008, 1, 203.  10.1007/s12274-008-8021-8
(27) Nguyen, T. T. T.; Tran, E.; Nguyen, T. H.; Do, P. T.; Huynh, T. H.; Huynh, H. Carcin. 2004, 25, 647.
(28) Wu, H. H.; Yang, R.; Song, B. M.; Han, Q. S.; Li, J. Y.; Zhang, Y.; Fang, Y.; Tenne, R. Wang, C. ACS Nano 2011, 5, 1276.  10.1021/nn102941b  
[1] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[2] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[3] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.
[4] ZHAO Sheng-Jun, ZHANG Wei, DENG Hui-Ning, LIU Wei. Layer-by-Layer Assembly of Graphene Oxide and Polyelectrolyte Composite Membranes for Monovalent Cation Separation[J]. Acta Phys. Chim. Sin., 2016, 32(3): 723-727.
[5] JIAO Jin-Zhen, LI Shi-Hui, HUANG Bi-Chun. Preparation of Manganese Oxides Supported on Graphene Catalysts and Their Activity in Low-Temperature NH3-SCR[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1383-1390.
[6] LIANG Yi, LU Yun, YAO Wei-Shang, ZHANG Xue-Tong. Polyimide Aerogels Crosslinked with Chemically Modified Graphene Oxide[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1179-1185.
[7] XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(5): 913-919.
[8] LI Wen-You, HE Yun-Qiu, LI Yi-Ming. Photoelectric Properties of Graphene Oxide Film Prepared with the Electrochemical Method Using Varying Levels of Reduction[J]. Acta Phys. Chim. Sin., 2015, 31(3): 457-466.
[9] YANG Jun-Li, WU Cong-Ling, LI Yuan-Hao, LI Wan-Li, MIAO Yan-Qin, GUO Kun-Peng, LIU Hui-Hui, WANG Hua, WU Yong-An. Effect of Graphene Oxide Doped PEDOT:PSS as a Hole Injection Layer on the Luminescence Performance of Organic Light-Emitting Diodes[J]. Acta Phys. Chim. Sin., 2015, 31(2): 377-383.
[10] MA Hui-Ling, ZHANG Long, ZHANG You-Wei, LIU Di, SUN Chao, ZENG Xin-Miao, ZHAI Mao-Lin. γ-Ray Induced Reduction of Graphene Oxide in Aqueous Solution[J]. Acta Phys. Chim. Sin., 2015, 31(10): 2016-2022.
[11] YU Chang-Lin, WEI Long-Fu, LI Jia-De, HE Hong-Bo, FANG Wen, ZHOU Wan-Qin. Preparation and Characterization of GO/Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2015, 31(10): 1932-1938.
[12] WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Phys. Chim. Sin., 2015, 31(1): 90-98.
[13] WANG Li, MA Jun-Hong. Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1267-1273.
[14] WANG Xin-Huan, HAN Qiu-Sen, LI Jing-Ying, YANG Rong, DIAO Guo-Wang, WANG Chen. Seedless Synthesis of Gold Nanorods and Applications in Photo-Thermal Cancer Therapy[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1363-1369.
[15] YANG Yu-Wen, FENG Gang, LU Zhang-Hui, HU Na, ZHANG Fei, CHEN Xiang-Shu. In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1180-1186.