Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (06): 1455-1460    DOI: 10.3866/PKU.WHXB201203303
Novel Method of Controlling Formation of Hot-Spot over Gold Catalysts for CO Oxidation
WANG Fang, WANG Cai-Hong, LI Da-Zhi
Department of Chemistry & Chemical Engineering, Binzhou University, Binzhou 256603, Shandong Province, P. R. China
Download:   PDF(800KB) Export: BibTeX | EndNote (RIS)      

Abstract  Au catalysts supported on Al2O3 and MOx-Al2O3 (M=Fe and Zn) were prepared by the deposition-precipitation method. Their catalytic activities for CO oxidation in the absence and presence of an H2-rich steam at room temperature were investigated in detail. Catalyst bed temperatures were determined directly by a thermocouple. The catalyst surface temperature depended on the volume ratio of O2/CO, and the concentrations of CO and H2. The temperature on the Au/Al2O3 surface can reach 170°C during CO oxidation, and is decreased to 55°C by addition of FeOx. These results indicate that formation of hot-spots on γ-alumina-supported gold catalysts could be controlled by adding an appropriate dopant. The structure of the catalysts was characterized by techniques such as X-ray powder diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. Addition of a dopant could transfer the active center from Au to AuIII, which resulted in different reaction mechanisms of preferential oxidation of CO in the presence of H2.

Key wordsCO oxidation      Dopant      Gold catalyst      Hot-spot     
Received: 13 December 2011      Published: 30 March 2012
MSC2000:  O643  

The project was supported by the Research Fund of Binzhou University, China (2010Y06).

Corresponding Authors: WANG Fang     E-mail:
Cite this article:

WANG Fang, WANG Cai-Hong, LI Da-Zhi. Novel Method of Controlling Formation of Hot-Spot over Gold Catalysts for CO Oxidation. Acta Phys. -Chim. Sin., 2012, 28(06): 1455-1460.

URL:     OR

(1) Yu, J.; Wu, G. S.; Mao, D. S.; Lu, G. Z. Acta Phys. -Chim. Sin. 2008, 24, 1751.[ 俞俊, 吴贵升, 毛东森, 卢冠忠. 物理化学学报, 2008, 24, 1751.]  doi: 10.1016/S1872-1508(08)60071-6
(2) Wen, L.; Lin, Z. Y.; Zhou, J. Z.; Gu, P. Y.; Fu, J. K.; Lin, Z. H. Acta Phys. -Chim. Sin. 2008, 24, 581. [文莉, 林种玉, 周剑章, 古萍英, 傅锦坤, 林仲华. 物理化学学报, 2008, 24 , 581.]
(3) Ye, Q., Huo, F. F., Yan, L. N., Wang, J., Cheng, S. Y., Kang, T. F. Acta Phys. -Chim. Sin., 2011, 27, 2872. [叶青, 霍飞飞, 闫立娜, 王娟, 程水源, 康天放. 物理化学学报, 2011, 27, 2872]
(4) Wang, S. R.; Wu, S. H.; Shi, J.; Zheng, X. C.; Huang, W. P. Acta Phys. -Chim. Sin. 2004, 20, 428. [王淑荣, 吴世华, 石娟, 郑修成, 黄唯平. 物理化学学报, 2004, 20, 428.]
(5) Liu, Y. L., You, C. R., Li, Y., He, T., Zhang, X. Q., Suo, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2455. [刘玉良, 由翠荣, 李杨, 何涛, 张香芹, 索掌怀. 物理化学学报, 2010, 26, 2455.]
(6) Xu, C. X.; Su, J. X.; Xu, J. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. J. Am. Chem. Soc. 2007, 129, 42.  doi: 10.1021/ja0675503
(7) Wang, F.; Lu, G. X. Catal. Lett. 2007, 115, 46.  doi: 10.1007/s10562-007-9069-x
(8) Panzera, G.; Modafferi, V.; Candamano, S.; Donato, A.; Frusteri, F.; Antonucci, P. L. J. Power Sources. 2004, 135 , 177.
(9)Zhang, M. H.; Hong, Y.; Ding, S. J.; Hu, J. J.; Fan, Y. X.; Voevodin, A. A.; Su, M. Nanoscale. 2010, 2, 2790.
(10) Kahlich, M.; Gasteiger, H.; Behm, R. J. New Mater. Electrochem. Syst. 1998, 1, 39.
(11) Echigo, M.; Tabata, T. Catal. Today 2004, 90, 269.  doi: 10.1016/j.cattod.2004.04.036
(12) Morillo, A.; Merten, C.; Eigenberger, G.; Hermann, I.; Lemken, D. Chem. Ing. Tech. 2003, 75, 68.  doi: 10.1002/cite.200390024
(13) Gritsch, A.; Kolios, G.; Eigenberger, G. Chem. Ing. Tech. 2004, 76, 722.  doi: 10.1002/cite.200403369
(14) Pinkerton, B.; Luss, D. Ind. Eng. Chem. Res. 2007, 46, 1898.  doi: 10.1021/ie060903m
(15) Marwaha, B.; Annamalai, J.; Luss, D. Chem. Eng. Sci. 2001, 56, 89.  doi: 10.1016/S0009-2509(00)00411-5
(16) Li, Sh. F.; Chemistry and catalytic reaction engineering, Chemical Industry Press, Beijing 1986, pp.199-202. [李绍芬. 化学与催化反应工程. 北京: 化学工业出版社, 1986: 199-202]
(17) Zhu, L. J.; Frens, G. J. Phys. Chem. B 2006, 110, 18307.  doi: 10.1021/jp063456x
(18) Haruta, M.; Yamada, N.; Kobayash, T. Iijima, S. J. Catal. 1989, 115, 301.  doi: 10.1016/0021-9517(89)90034-1
(19) Visco, A. M.; Neri, F.; Neri, G.; Donato, A.; Milone, C.; Galvagno, S. Phys. Chem. Chem. Phys. 1999, 1, 2869.
(20) Li, B. T.; Maruyama, K. J.; Nurunnabi, M.; Kunimori, K.; Tomishige, K. Ind. Eng. Chem. Res. 2005, 44, 485.  doi: 10.1021/ie0493210
(21) Graciani, J.; Oviedo, J.; Sanz, J. F. J. Phys. Chem. B 2006, 110, 11600.  doi: 10.1021/jp057322f
(22) Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Phys. Rev. Lett. 1998, 81, 2819.  doi: 10.1103/PhysRevLett.81.2819
(23) Tripathy, A. K.; Kamble, V. S.; Gupta, N. M. J. Catal. 1999, 187 , 332
(24) Reed, T. B. Free Energy Formation of Binary Compounds; MIT Press: Cambridge, 1971.
(25) Kotobuki, M.; Watanabe, A.; Uchida, H.; Yamashita, H.; Watanabe, M. J. Catal. 2005, 236, 262.  doi: 10.1016/j.jcat.2005.09.026
[1] Xue-Hui HUANG,Xiao-Hui SHANG,Peng-Ju NIU. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[2] Mingshu CHEN. Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2424-2437.
[3] Yong-Bing GU,Qiu-Xia CAI,Xian-Lang CHEN,Zhen-Zhan ZHUANG,Hu ZHOU,Gui-Lin ZHUANG,Xing ZHONG,Dong-Hai MEI,Jian-Guo WANG. Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al2O3/Au(111) Catalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1674-1680.
[4] Yong-Chang JIA,Shu-Yuan WANG,Lian MENG,Ji-Qing LU,Meng-Fei LUO. Effects of Zr Addition on CO and CH4 Catalytic Oxidation over PdO/PdO/Ce1-xPdxO2-δ Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1801-1809.
[5] Wei-Xin HUANG,Kun QIAN,Zong-Fang WU,Shi-Long CHEN. Structure-Sensitivity of Au Catalysis[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 48-60.
[6] Shu-Shuang LI,Lei TAO,Qi ZHANG,Yong-Mei LIU,Yong CAO. Recent Advances in Nano-Gold-Catalyzed Green Synthesis and Clean Reactions[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 61-74.
[7] Xiao-Kun. LI,Dong-Dong. MA,Yan-Ping. ZHENG,Hong. ZHANG,Ding. DING,Ming-Shu. CHEN,Hui-Lin. WAN. Performance of CO Oxidation over Highly Dispersed Gold Catalyst on TiOx/SiO2 Composite Supports[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1753-1760.
[8] Qiu-Xia. FENG,Peng. YU,Jing. WANG,Xiao-Gan. LI. Preparation of Y-Doped ZnO Nanofibers and Sensing Mechanism of the Gas Sensors[J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2405-2412.
[9] LÜ Yong-Ge, LI Yong, TA Na, SHEN Wen-Jie. Morphology-Controlled Synthesis of Co3O4 Nanocubes and Their Catalytic Performance in CO Oxidation[J]. Acta Phys. -Chim. Sin., 2014, 30(2): 382-388.
[10] XU Li, PAN Guo-Shun, LIANG Xiao-Lu, LUO Gui-Hai, ZOU Chun-Li, LUO Hai-Mei. Electrocatalytic Activity of Fe-N/C-TsOH Catalyst for the Oxygen Reduction Reaction in Alkaline Media[J]. Acta Phys. -Chim. Sin., 2014, 30(2): 318-324.
[11] LIANG Qian, ZHAO Zhen, LIU Jian, WEI Yue-Chang, JIANG Gui-Yuan, DUAN Ai-Jun. Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al):an Active Catalyst for CO Oxidation[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 129-134.
[12] SUN Jing-Fang, GE Cheng-Yan, YAO Xiao-Jiang, CAO Yuan, ZHANG Lei, TANG Chang-Jin, DONG Lin. Preparation of NiO/CeO2 Catalysts by Solid State Impregnation and Their Application in CO Oxidation[J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2451-2458.
[13] LI Na, CHEN Qiu-Yan, LUO Meng-Fei, LU Ji-Qing. Kinetics Study of CO Oxidation Reaction over Pt/TiO2 Catalysts[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 1055-1062.
[14] DONG Hua-Qing, PAN Xi, XIE Qin, MENG Qiang-Qiang, GAO Jian-Rong, WANG Jian-Guo. CO Adsorption and Oxidation on Metal-Doped TiO2 Nanotube Arrays[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 44-50.
[15] YE Qing, HUO Fei-Fei, YAN Li-Na, WANG Juan, CHENG Shui-Yuan, KANG Tian-Fang. Highly Active Au/α-MnO2 Catalysts for the Low-Temperature Oxidation of Carbon Monoxide and Benzene[J]. Acta Phys. -Chim. Sin., 2011, 27(12): 2872-2880.