Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (06): 1467-1473    DOI: 10.3866/PKU.WHXB201203312
Effect of Surface Acidity of CuO-SBA-15 on Adsorptive Desulfurization of Fuel Oils
SHAO Xin-Chao1, DUAN Lin-Hai1, WU Yu-Ye1, QIN Yu-Cai2, YU Wen-Guang1, WANG Yuan1, LI Huai-Lei1, SUN Zhao-Lin1, SONG Li-Juan1,2
1. Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning ShiHua University, Fushun 113001, Liaoning Province, P. R. China;
2. College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 257061, Shandong Province, P. R. China
Download:   PDF(980KB) Export: BibTeX | EndNote (RIS)      

Abstract  Solid-state grinding is a simple and effective technique to incorporate active species into the channels of mesoporous materials with different degrees of filling. Using this method, different concentrations of CuO were loaded into the mesochannels of as-prepared mesoporous silica (APS) and calcined SBA-15 (CS). The samples were prepared and characterized using X-ray diffraction (XRD), N2 physisorption, and Fourier transform infrared (FTIR) spectroscopy. The relative number of hydroxyl groups was studied by in situ FTIR spectroscopy, and the total surface acidity of the adsorbents was monitored by FTIR spectroscopy at 423 K using pyridine as a probe. Desulfurization of fluid catalytic cracking (FCC) fuel oils using these materials was investigated. The results suggest that CuO interacts directly with support hydroxyl groups to form [Si-O-Cu-O-Si] linkages in the mixtures, which can effectively constrain the condensation of hydroxyl groups in SBA-15 to improve the mesostructure of the adsorbents during calcination. Saturated coverage of the surface of APS is reached using 3 mmol·g-1 CuO. However, using CS, aggregation of CuO is observed in the material containing 3 mmol·g-1 of CuO. Both the surface acidity and desulfurization performance significantly increase upon modification of SBA-15 with CuO, and then decrease slowly as the concentration of CuO is increased. The sample containing 3 mmol·g-1 CuO shows the highest Lewis acidity and desulfurization performance. The Lewis acidity of the adsorbents matches the adsorptive desulfurization performance. It is also demonstrated that reduction of charge density around copper atoms helps to form Lewis acid sites.

Key wordsSBA-15 mesoporous material      Surface acidity      Hydroxyl group      Adsorptive desulfurization      Lewis acid     
Received: 27 February 2012      Published: 31 March 2012
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (20976077, 21076100), National Key Basic Research Program of China (973) (2007CB216403), and Innovation Team of Liaoning Province Colleges, China.

Corresponding Authors: SONG Li-Juan     E-mail:
Cite this article:

SHAO Xin-Chao, DUAN Lin-Hai, WU Yu-Ye, QIN Yu-Cai, YU Wen-Guang, WANG Yuan, LI Huai-Lei, SUN Zhao-Lin, SONG Li-Juan. Effect of Surface Acidity of CuO-SBA-15 on Adsorptive Desulfurization of Fuel Oils. Acta Phys. -Chim. Sin., 2012, 28(06): 1467-1473.

URL:     OR

(1) Wang, Y. H.; Yang, R. T. Ind. Eng. Chem. Res. 2009, 48, 142.  doi: 10.1021/ie800208g
(2) Wang, H. G.; Jiang, H.; Xu, J.; Sun, Z. L.; Zhang, X. T.; Zhu, H. L.; Song, L. J. Acta Phys. -Chim. Sin. 2008, 24, 1714. [王洪国, 姜恒, 徐静, 孙兆林, 张晓彤, 朱赫礼, 宋丽娟. 物理化学学报, 2008, 24, 1714.]
(3) Wang, W. Y.; Pan, M. X.; Qin, Y. C.;Wang, L. T.; Song, L. J. Acta Phys. -Chim. Sin. 2011, 27, 1176. [王旺银, 潘明雪, 秦玉才, 王凌涛, 宋丽娟. 物理化学学报, 2011, 27, 1176.]  doi: 10.3866/PKU.WHXB20110442
(4) Ma, X. L.; Velu, S.; Kim, J. H.; Song, C. S. Appl. Catal. B-Enviro. 2005, 56, 137.  doi: 10.1016/j.apcatb.2004.08.013
(5) Shan, J. H.; Chen, L.; Sun, L. B.; Liu, X. Q. Energy Fuels 2011, 25, 2993.
(6) Wu, W. Z.; Ren, S. H.; Hou, Y. C.; Jin, M. J. Ind. Eng. Chem. Res. 2011, 50, 998.  doi: 10.1021/ie101126a
(7) Rath, D.; Parida, K. M. Ind. Eng. Chem. Res. 2011, 50, 2839.  doi: 10.1021/ie101314f
(8) Cedeno-Caero, L.; Fabian-Mijangos, L. Ind. Eng. Chem. Res. 2011, 50, 2659.  doi: 10.1021/ie100680p
(9) Song, X. M.; Zhang, W.; Xu, K.; Zhang, Q. A.; Liu, D. L.; Wu, S. Y.; Verpoort, F. Ind. Eng. Chem. Res. 2010, 49, 11760.  doi: 10.1021/ie100957k
(10) Li, W. L.; Xing, J. M.; Xiong, X. C.; Huang, J. X.; Liu, H. Z. Ind. Eng. Chem. Res. 2006, 45, 2845.  doi: 10.1021/ie051125l
(11) Wang, Y. H.; Yang, R. T.; Heinzel, J. M. Chem. Eng. Sci. 2008, 63, 356
(12) Ju, X. F.; Jin, L. L.; Ma, T.; Chen, X. L.; Song, L. J. Acta Phys. -Chim. Sin. 2009, 25, 2256. [鞠秀芳, 靳玲玲, 马涛, 陈晓陆, 宋丽娟. 物理化学学报, 2009, 25, 2256.]  doi: 10.3866/PKU.WHXB20091024
(13) Hernandez-Maldonado, A. J.; Yang, R. T. Ind. Eng. Chem. Res. 2003, 42, 123.  doi: 10.1021/ie020728j
(14) Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1997, 120, 6025.
(15) Wan, Y.; Zhao, D. Y. Chem. Rev. 2006, 107, 2721.
(16) Vinu, A.; Kumar, G. S.; Ariga, K.; Murugesan, V. J. Mol. Catal. A-Chem. 2005, 234, 57.
(17) Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.  doi: 10.1126/science.279.5350.548
(18) Szegedi, A.; Popova, M.; Minchev, C. J. Mater. Sci. 2008, 44, 6710.
(19) Yang, J. S.; Jung, W. Y.; Lee, G. D.; Park, S. S.; Hong, S. S. Top. Catal. 2010, 53, 543.  doi: 10.1007/s11244-010-9484-x
(20) Wang, Y. H.; Yang, F. H.; Yang, R. T. Ind. Eng. Chem. Res. 2006, 45, 7649.  doi: 10.1021/ie060922w
(21) Guo, X. Y.; Yin, A. Y.; Dai, W. L.; Fan, K. N. Catal. Lett. 2009, 131, 22.
(22) Wang, Y. M.; Wu, Z. Y.; Wei, Y. L.; Zhu, J. H. Microporous Mesoporous Mat. 2005, 84, 128.
(23) Basaldella, E. I.; Tara, J. C.; Armenta, G. A.; Patino-Iglesias, M. E.; Castellon, E. R. J Sol-Gel Sci. Technol. 2006, 37, 141.  doi: 10.1007/s10971-006-6434-y
(24) Wang, Y. M.; Wu, Z. Y.; Shi, L. Y.; Zhu, J. H. Adv. Mater. 2005, 17, 323.  doi: 10.1002/adma.200400860
(25) Sun, Y.; Walspurger, S.; Tessonnier, J. P.; Louis, B.; Sommer, J. Appl. Catal. A -Gen. 2006, 300, 91.  doi: 10.1016/j.apcata.2005.09.038
(26) Mohamed, A. B.; Synthesis, Characterization and Activity of Al-MCM-41 Catalyst for Hydroxyalkylation of Epoxides. Ph. D. Dissertation, University of Teknologi Malaysia, Johor, 2005.
(27) Wang, X. G.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. J. Phys. Chem. B 2005, 109, 1763.  doi: 10.1021/jp045798d
(28) Tian, B. Z.; Liu, X. Y.; Yang, H. F.; Xie, S. H.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Adv. Mater. 2003, 15, 1370.  doi: 10.1002/adma.200305211
(29) Zhou, C. F.; Wang, Y. M.; Cao, Y.; Zhuang, T. T.; Huang, W.; Chun, Y.; Zhu, J. H. J. Mater. Chem. 2006, 16, 1520.  doi: 10.1039/b514317a
(30) Wang, Y. M.; Wu, Z. Y.; Zhu, J. H. J. Solid State Chem. 2004, 177, 3815.  doi: 10.1016/j.jssc.2004.07.013
(31) Lopez, N.; Illas, F. J. Phys. Chem. B 1999, 103, 1712.  doi: 10.1021/jp9840174
(32) Lercher, J. A.; Grundling, C.; Eder-Mirth, G. Catal. Today 1996, 27, 343.
(33) Tanabe K.; Sumiyoshi, T.; Shibata, K.; Kiyoura, T.; Kitagawa, J. Bull. Chem. Soc. Jpn. 1974, 47, 1065.
[1] PAN Wen-Ya, HUANG Liang, QIN Feng, ZHUANG Yan, LI Xue-Mei, MA Jian-Xue, SHEN Wei, XU Hua-Long. Regulation of Pore Structure and Acidity of a ZSM-5 Catalyst for Dehydration of Glycerol to Acrolein[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 965-972.
[2] LI Jian-Mei, LIU Jian, REN Li-Wei, LIU Qing-Long, ZHAO Zhen, WEI Yue-Chang, DUAN Ai-Jun, JIANG Gui-Yuan. Selective Oxidation of Ethane to Aldehydes over Potassium-Promoted SBA-15-Supported Molybdenum Oxide Catalysts[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1736-1744.
[3] ZHANG Xiao-Tong, YU Wen-Guang, QIN Yu-Cai, DONG Shi-Wei, PEI Ting-Ting, WANG Lin, SONG Li-Juan. Influence of Surface Acidity of Y Zeolites on the Adsorption of Organic Molecules by In situ Fourier Transform Infrared Spectroscopy[J]. Acta Phys. -Chim. Sin., 2013, 29(06): 1273-1280.
[4] HUANG Ping, PAN Si-Wei, HUANG Bi-Chun, CHENG Hua, YE Dai-Qi, WU Jun-Liang, FU Ming-Li, LU Sheng-Liang. Structural Properties of MnOx/Al-SBA-15 in Low-Temperature Selective Catalytic Reduction of NOx with NH3[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 176-182.
[5] LI Xiang-Cheng, ZHANG Yu, XIA Yin-Jiang, HU Bi-Cheng, ZHONG-Lin, WANG Yan-Qin, LU Guan-Zhong. One-Pot Catalytic Conversion of Xylose to Furfural on Mesoporous Niobium Phosphate[J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2349-2354.
[6] ZHOU Ju-Fa, ZHAO Ming, PENG Na, YANG Zheng-Zheng, GONG Mao-Chu, CHEN Yao-Qiang. Performance Effect of Pt/MOx-SiO2 (M=Ce, Zr, Al) Catalysts for CO and C3H8 Oxidation[J]. Acta Phys. -Chim. Sin., 2012, 28(06): 1448-1454.
[7] YU Hong-Bo, JIAWen-Zhi, PU Zhi-Ying, WANG Yue-Juan, LU Ji-Qing, TENG Bo-Tao, LUO Meng-Fei. Preparation and Application of a Cr2O3-α-AlF3 Catalyst with a High Specific Surface Area[J]. Acta Phys. -Chim. Sin., 2011, 27(11): 2677-2681.
[8] HE Jie, FAN Yi-Ning. Dispersion States and Brønsted Acidity Feature of Nb2O5on t-ZrO2[J]. Acta Phys. -Chim. Sin., 2011, 27(10): 2416-2420.
[9] WANG Wang-Yin, PAN Ming-Xue, QIN Yu-Cai, WANG Ling-Tao, SONG Li-Juan. Effects of Surface Acidity on the Adsorption Desulfurization of Cu(I)Y Zeolites[J]. Acta Phys. -Chim. Sin., 2011, 27(05): 1176-1180.
[10] ZHENG Hai-Ying, XIE Guan-Qun, WANG Xiao-Xia, JIN Ling-Yun, LUO Meng-Fei. Selective Hydrogenation of Crotonaldehyde over ZrO2-Supported Pt Catalysts[J]. Acta Phys. -Chim. Sin., 2010, 26(12): 3273-3277.
[11] HE Jie, FAN Yi-Ning. Dispersion and Acidity of Niobia on Nb2O5/γ-Al2O3[J]. Acta Phys. -Chim. Sin., 2010, 26(03): 679-684.
[12] HAN Cheng-Hui;LIU Bing-Hua;ZHANG Hui-Liang;SHEN Jian-Yi . Characterization of TiO2–ZrO2and Isopropanol Catalysis Conversion[J]. Acta Phys. -Chim. Sin., 2006, 22(08): 993-998.
[13] JIN Sheng-ming; QIU Guan-zhou; YANG Hua-ming; DENG Zhen-xia. Preparation of HMS and AlSBA Mesoporous Materials from Sepiolite[J]. Acta Phys. -Chim. Sin., 2005, 21(07): 796-799.
[14] WANG Xiao-Hua; TAO Guo-Hong; WU Xiao-Mu; KOU Yuan. Investigation of the Acidity of Ionic Liquids by IR Spectroscopy[J]. Acta Phys. -Chim. Sin., 2005, 21(05): 528-533.
[15] Piao Ling-Yu;Han Yang;Kou Yuan. The Reuse of Acidic Ionic Liquids as Catalysts in Diphenyl Oxide Alkylation with Dodecene[J]. Acta Phys. -Chim. Sin., 2004, 20(09): 1083-1088.