Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (06): 1481-1488    DOI: 10.3866/PKU.WHXB201203313
CATALYSIS AND SURFACE SCIENCE     
Bi3.25Nd0.75Ti3O12 Nanostructures: Controllable Synthesis and Visible-Light Photocatalytic Activities
LIN Xue1,2, GUAN Qing-Feng1, LI Hai-Bo3, LI Hong-Ji2, BA Chun-Hua2, DENG Hai-De2
1. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, P. R. China;
2. College of Chemistry, Key Laboratory of Preparation and Application Environmentally Friendly Materials of the Ministry of Education, Jilin Normal University, Siping 136000, Jilin Province, P. R. China;
3. College of Physics, Jilin Normal University, Siping 136000, Jilin Province, P. R. China
Download:   PDF(1166KB) Export: BibTeX | EndNote (RIS)      

Abstract  Neodymium-doped bismuth titanate (Bi3.25Nd0.75Ti3O12, BNdT) nanostructures with different morphologies were synthesized hydrothermally without using surfactant or template. Transmission electron microscopy (TEM) results showed that different morphologies could be fabricated simply by manipulating the concentration of OH- ions during hydrothermal synthesis. Hydroxide ions played an important role in controlling the formation of seeds and the growth rate of BNdT particles. On the basis of structural analysis of samples obtained under different conditions, a possible mechanism for the formation of these distinctive morphologies was proposed. A UV-visible diffuse reflectance spectrum (UV-Vis DRS) of an as-prepared BNdT sample revealed that its band gap energy (Eg) was about 1.984 eV. BNdT photocatalysts exhibited higher photocatalytic activities for the degradation of methyl orange (MO) under visible light irradiation than those for traditional commercial P25 TiO2 and N-doped TiO2 (N-TiO2). BNdT nanowires prepared using a hydroxide concentration of 10 mol·L-1 showed the highest photocatalytic activity among the samples. Over this catalyst, 93.0% degradation of MO (0.01 mmol·L-1) was obtained after irradiation with visible light for 360 min. In addition, there was no significant decrease in photocatalytic activity after the catalyst was used 4 times, indicating that BNdT is a stable photocatalyst for degradation of MO under visible light irradiation.

Key wordsBismuth titanate      Neodymium doping      Nanostructure      Hydrothermal synthesis      Photocatalytic degradation      Visible light irradiation     
Received: 13 February 2012      Published: 31 March 2012
MSC2000:  O643  
Fund:  

The project was supported by the Key Laboratory of Preparation and Application Environmentally Friendly Materials of the Ministry of Education of China, Scientific Research Innovation Plan for Young Talented Person and Plans of Scientific Research Innovation for Postgraduates of Jilin Normal University, China.

Corresponding Authors: GUAN Qing-Feng     E-mail: guanqf@ujs.edu.cn
Cite this article:

LIN Xue, GUAN Qing-Feng, LI Hai-Bo, LI Hong-Ji, BA Chun-Hua, DENG Hai-De. Bi3.25Nd0.75Ti3O12 Nanostructures: Controllable Synthesis and Visible-Light Photocatalytic Activities. Acta Phys. Chim. Sin., 2012, 28(06): 1481-1488.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201203313     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I06/1481

(1) Uyguner-Demirel, C. S.; Bekbolet, M. Chemosphere 2011, 84, 1009.  doi: 10.1016/j.chemosphere.2011.05.003
(2) Yu, J. G.; Xiang, Q. J.; Zhou, M. H. Appl. Catal. B: Environ. 2009, 90, 595.  doi: 10.1016/j.apcatb.2009.04.021
(3) Xu, D.; Gao, A. M.; Deng, W. L. Acta Phys. -Chim. Sin. 2008, 24 (7), 1219. [许迪, 高爱梅, 邓文礼. 物理化学学报, 2008, 24 (7), 1219.]  doi: 10.3866/PKU.WHXB20080717
(4) Xie, J.; Wang H.; Duan, M. Acta Phys. -Chim. Sin. 2011, 27 (1), 193. [谢娟, 王虎, 段明. 物理化学学报, 2011, 27 (1): 193.]  doi: 10.3866/PKU.WHXB20110124
(5) Yang, X. H.; Liu, C.; Liu, J. K.; Zhu, Z. C. Acta Phys. -Chim. Sin. 2011, 27 (12), 2939. [杨小红, 刘畅, 刘金库, 朱子春. 物理化学学报, 2011, 27 (12), 2939.]  doi: 10.3866/PKU.WHXB20112939
(6) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lv, G. X.; Li, S. B. Acta Phys. -Chim. Sin., 2008, 24 (11), 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.]  doi: 10.3866/PKU.WHXB20081123
(7) Li, A. C.; Li, G. H.; Zheng, Y.; Feng, L. L.; Zheng, Y. J. Acta Phys. -Chim. Sin. 2012, 28 (2), 457. [李爱昌, 李桂花, 郑琰, 冯玲玲, 郑彦俊. 物理化学学报, 2012, 28 (2), 457.]  doi: 10.3866/PKU.WHXB201112081
(8) Zhang, Q.; He, Y. Q.; Chen, X. G.; Hu, D. H.; Li, L. J.; Yin, T.; Ji, L. L.Acta Phys. -Chim. Sin. 2010, 26 (3), 654. [张琼, 贺蕴秋, 陈小刚, 胡栋虎, 李林江, 尹婷, 季伶俐. 物理化学学报, 2010, 26 (3), 654.]  doi: 10.3866/PKU.WHXB20100318
(9) Shen, J. J.; Liu, C.; Zhu, Y. D.; Li, W.; Feng, X.; Lu, X. H. Acta Phys. -Chim. Sin. 2009, 25 (5), 1013. [沈晶晶, 刘畅, 朱育丹, 李伟, 冯新, 陆小华. 物理化学学报, 2009, 25 (5), 1013.]  doi: 10.3866/PKU.WHXB20090421
(10) Ghorai, T. K.; Biswas, S. K.; Pramanik, P. Appl. Surf. Sci. 2008, 254, 7498.  doi: 10.1016/j.apsusc.2008.06.042
(11) Wang, H. Q.; Wu, Z. B.; Liu, Y.; Wang, Y. J. Chemosphere 2008, 74, 773.
(12) Zhang, J. W.; Jin, Z. S.; Feng, C. X.; Yu, L. G.; Zhang, J. W.; Zhang, Z. J. J. Solid State Chem. 2011, 184, 3066.  doi: 10.1016/j.jssc.2011.09.016
(13) Liu, D. R.; Jiang, Y. S.; Gao, G. M. Chemosphere 2011, 83, 1546.  doi: 10.1016/j.chemosphere.2011.01.033
(14) Yu, J. Q.; Zhang, Y.; Kudo, A. J. Solid State Chem. 2009, 182, 223.  doi: 10.1016/j.jssc.2008.10.021
(15) Zhang, L.; Cao, X. F.; Chen, X. T.; Xue, Z. L. J. Colloid Interface Sci. 2011, 354, 630.  doi: 10.1016/j.jcis.2010.11.042
(16) Zhang, L. S.; Wang, H. L.; Chen, Z. G.; Wong, P. K.; Liu, J. S. Appl. Catal. B: Environ. 2011, 106, 1.
(17) Hou, J. G.; Wang, Z.; Jiao, S. Q.; Zhu, H. M. J. Hazard. Mater. 2011, 192, 1772.  doi: 10.1016/j.jhazmat.2011.07.013
(18) Hou, J. G.; Cao, R.; Jiao, S. Q.; Zhu, H. M.; Kumar, R. V. Appl. Catal. B: Environ. 2011, 104, 399.  doi: 10.1016/j.apcatb.2011.02.032
(19) Thanabodeekij, N.; Gulari, E.; Wongkasemjit, S. Powder Technol. 2005, 160, 203.  doi: 10.1016/j.powtec.2005.08.015
(20) Hou, J. G.; Jiao, S. Q.; Zhu, H. M.; Kumar, R. V. J. Solid State Chem. 2011, 184, 154.  doi: 10.1016/j.jssc.2010.11.017
(21) Zhou, T. F.; Hu, J. C. Environ. Sci. Technol. 2010, 44, 8698.  doi: 10.1021/es1019959
(22) Cheng, H. F.; Huang, B. B.; Dai, Y.; Qin, X. Y.; Zhang, X. Y.; Wang, Z. Y.; Jiang, M. H. J. Solid State Chem. 2009, 182, 2274.  doi: 10.1016/j.jssc.2009.06.006
(23) Lin, X.; Guan, Q. F.; Liu, Y.; Li, H. B. Chin. Phys. B 2010, 19, 107701.  doi: 10.1088/1674-1056/19/10/107701
(24) Lin, X.; Guan, Q. F.; Li, H. B.; Liu, Y.; Zou, G. T. Sci. China-Phys. Mech. Astron. 2012, 55, 33.  doi: 10.1007/s11433-011-4574-8
(25) Xu, J. J.; Chen, M. D.; Fu, D. G. Appl. Surf. Sci. 2011, 257, 7381.  doi: 10.1016/j.apsusc.2011.02.030
(26) Xu, J.; Wang, W. Z.; Shang, M.; Gao, E. P.; Zhang, Z. J.; Ren, J. J. Hazard. Mater. 2011, 196, 426.  doi: 10.1016/j.jhazmat.2011.09.010
(27) Yu, H. G.; Yu, J. G.; Cheng, B. Chemosphere 2007, 66, 2050.  doi: 10.1016/j.chemosphere.2006.09.080
(28) Wang, Z. Z.; Qi, Y. J.; Qi, H. Y.; Lu, C. J.; Wang, S. M. J Mater Sci: Mater Electron 2010, 21, 523.  doi: 10.1007/s10854-009-9950-z
(29) Yao, W. F.; Xu, X. H.; Wang, H.; Zhou, J. T.; Yang, X. N.; Zhang, Y.; Shang, S. X.; Huang, B. B. Appl. Catal. B: Environ. 2004, 52, 109.  doi: 10.1016/j.apcatb.2004.04.002
(30) Xu, G. C.; Pan, L.; Guan, Q. F.; Zou, G. T. Acta Physica Sinica 2006, 55, 3080. [徐国成潘玲, 关庆丰, 邹广田. 物理学报, 2006, 55, 3080.]  doi: 10.3321/j.issn:1000-3290.2006.06.073
(31) Hou, Y. D.; Wang, X. C.; Wu, L.; Chen, X. F.; Ding, Z. X.; Wang, X. X.; Fu, X. Z. Chemosphere 2008, 72, 414.  doi: 10.1016/j.chemosphere.2008.02.035
(32) Jiang, X. P.; Lin, M.; Tu, N.; Chen, C.; Zhou, S. L.; Zhan, H. Q. J. Alloy. Compd. 2011, 509, 9346.  doi: 10.1016/j.jallcom.2011.07.034
(33) Yang, J. H.; Zheng, J. H.; Zhai, H. J.; Yang, L. L.; Lang, J. H.; Gao M. J. Alloy. Compd. 2009, 481, 628.  doi: 10.1016/j.jallcom.2009.03.108
(34) Arrouvel, C.; Digne, M.; Breysse, M.; Toulhoat, H.; Raybaud, P. J. Catal. 2004, 222, 152.  doi: 10.1016/j.jcat.2003.10.016
(35) Hou, L.; Hou, Y. D.; Song, X. M.; Zhu, M. K.; Wang, H.; Yan, H. Mater. Res. Bull. 2006, 41, 1330.  doi: 10.1016/j.materresbull.2005.12.010
(36) Zhu, X. Q.; Zhang, J. L.; Chen, F. Chemosphere 2010, 78, 1350.  doi: 10.1016/j.chemosphere.2010.01.002
(37) Goto, T.; Noguchi, Y.; Soga, M.; Miyayama, M. Mater. Res. Bull. 2005, 40, 1044.  doi: 10.1016/j.materresbull.2005.02.025
(38) Cai, M. Q.; Yin, Z.; Zhang, M. S.; Li, Y. Z. Chem. Phys. Lett. 2004, 399, 89.  doi: 10.1016/j.cplett.2004.09.143
[1] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[2] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.
[3] SUN Meng-Ting, HUANG Bi-Chun, MA Jie-Wen, LI Shi-Hui, DONG Li-Fu. Morphological Effects of Manganese Dioxide on Catalytic Reactions for Low-Temperature NH3-SCR[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1501-1510.
[4] WANG Yuan-Yuan, XU Qun-Xing, XIE Hua-Qing, WU Zi-Hua, XING Jiao-Jiao. Monte-Carlo Simulations of the Effect of Surfactant on the Growth of Silver Dendritic Nanostructures[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2518-2522.
[5] TONG La-Ga, LIU Jin-Yan, WANG Cen-Chen, RONG Hua, LI Wei. Preparation of Micro/Nano ZnO Pompons and Their Catalytic Activity for the Solar Degradation of Organic Dyes[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1615-1620.
[6] ZU Guo-Qing, SHEN Jun, WANG Wen-Qin, ZOU Li-Ping, XU Wei-Wei, ZHANG Zhi-Hua. Preparation of Heat-Resistant, Core/Shell Nanostructured TiO2/SiO2 Composite Aerogels and Their Photocatalytic Properties[J]. Acta Phys. Chim. Sin., 2015, 31(2): 360-368.
[7] HAO Yan-Zhong, GUO Zhi-Min, SUN Bao, PEI Juan, WANG Shang-Xin, LI Ying-Pin. Photoelectrochemical Properties of Hierarchical ZnO Nanosheets Micro-Nanostructure Modified with Sb2S3 Nanoparticles[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2109-2116.
[8] HUA Wei-Bo, ZHENG Zhuo, LI Long-Yan, GUO Xiao-Dong, LIU Heng, SHEN Chong-Heng, WU Zhen-Guo, ZHONG Ben-He, HUANG Ling. Synthesis of Nanostructured LiNi1/3Co1/3Mn1/3O2 by Ammonia-Evaporation-Induced Synthesis and Its Electrochemical Properties as a Cathode Material for a High-Power Li-Ion Battery[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1481-1486.
[9] YIN Hai-Feng, ZHANG Hong, YUE Li. Near-Infrared Plasmon Study on N-Doped Hexagonal Graphene Nanostructures[J]. Acta Phys. Chim. Sin., 2014, 30(6): 1049-1054.
[10] FU Ping-Feng, ZHANG Peng-Yi. Low-Temperature Electrostatic Self-Assembly of Noble Metals on TiO2 Nanostructured Films with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2014, 30(5): 965-972.
[11] LIN Xue, GUO Xiao-Yu, WANG Qing-Wei, CHANG Li-Min, ZHAI Hong-Ju. Hydrothermal Synthesis and Efficient Visible Light Photocatalytic Activity of Bi2MoO6/BiVO4 Heterojunction[J]. Acta Phys. Chim. Sin., 2014, 30(11): 2113-2120.
[12] XING Wei-Nan, NI Liang, YAN Xue-Sheng, LIU Xin-Lin, LUO Ying-Ying, LU Zi-Yang, YAN Yong-Sheng, HUO Peng-Wei. Preparation of C@CdS/Halloysite Nanotube Composite Photocatalyst Using One-Step Pyrolytic Method and Its Photodegradation Properties[J]. Acta Phys. Chim. Sin., 2014, 30(1): 141-149.
[13] XU Jing, QIANG Jin-Feng, WANG Rui-Juan, NIU Wen-Jun, SHEN Ming. Controllable Preparation of Rambutan-Shape AlOOH/Al2O3 Nanomaterials with a Composite Soft Template[J]. Acta Phys. Chim. Sin., 2013, 29(10): 2286-2294.
[14] DU Shu-Qing, YUAN Yu-Feng, TU Wei-Xia. Microwave-Hydrothermal Synthesis and Photocatalytic Activity of Zn2GeO4 Nanoribbons[J]. Acta Phys. Chim. Sin., 2013, 29(09): 2062-2068.
[15] LIN Xue, YU Li-Li, Yan Li-Na, GUAN Qing-Feng, Yan Yong-Sheng, ZHAO Han. Controllable Synthesis and Photocatalytic Activity of Spherical, Flowerlike and Threadlike Bismuth Vanadates[J]. Acta Phys. Chim. Sin., 2013, 29(08): 1771-1777.