Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (07): 1630-1636    DOI: 10.3866/PKU.WHXB201204171
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Theoretical Study on the Synthesis of Ethyl Tertiary Butyl Ether over HZSM-5 Zeolite
LI Jun-Nan, PU Min, SU Yong, HE Jing, EVANS David G.
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
Download:   PDF(2185KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The formation mechanism of ethyl tertiary butyl ether (ETBE) from ethanol and isobutene catalyzed by HZSM-5 has been investigated using the ONIOM (B3LYP/6-31G(d,p):UFF) method. The calculation results of the reactants adsorbability reveal that the interaction between ethanol and the acidic sites on HZSM-5 leads to the formation of hydrogen bonds. The interaction between isobutene and Brönsted acidic sites leads to the formation of a π-complex. It is subsequently found that the mechanism of the ETBE formation from ethanol and isobutene catalyzed by HZSM-5 is a concerted reaction, and that the order of reactant adsorption onto HZSM-5 affected the reaction. The favorable pathway is based on the complex formed by the simultaneous adsorption of ethanol and isobutene, in which the H atom of the π-complex is transferred to the C atom of the C=C in isobutene, and the O atom of the adsorbed ethanol is transferred to the other C atom of the C=C to form the C-O bond. In this process, the proton of the acidic sites adds to the C=C bond forming the C-H bond, and the H atom of the ethanol hydroxyl interacts with acidic sites, generating a new proton. The corresponding lowest energy barrier was 25.14 kJ·mol-1.



Key wordsEthanol      Isobutene      HZSM-5 zeolite      ONIOM      Ethyl tertiary butyl ether     
Received: 01 December 2011      Published: 17 April 2012
MSC2000:  O641  
Corresponding Authors: PU Min     E-mail: pumin@mail.buct.edu.cn
Cite this article:

LI Jun-Nan, PU Min, SU Yong, HE Jing, EVANS David G.. Theoretical Study on the Synthesis of Ethyl Tertiary Butyl Ether over HZSM-5 Zeolite. Acta Phys. Chim. Sin., 2012, 28(07): 1630-1636.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201204171     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I07/1630

(1) Nadim, F.; Zack, P.; Hoag, G. E.; Liu, S. Energ. Policy 2001,29, 1. doi: 10.1016/S0301-4215(00)00099-9
(2) Oktar, N.; Murtezaoglu, K.; Dogu, G.; Gonderten, I.; Dogu, T.J. Chem. Technol. Biotechnol. 1999, 74, 155. doi: 10.1002/(SICI)1097-4660(199902)74:2<155::AID-JCTB982>3.0.CO;2-T
(3) VanWezel, A.; Puijker, L.; Vink, C.; Versteegh, A.; De Voogt, P.Chemosphere 2009, 76, 672. doi: 10.1016/j.chemosphere.2009.03.073
(4) Hernandez-Perez, G.; Fayolle, F.; Vandecasteele, J. P. Appl. Microbiol. Biot. 2001, 55, 117. doi: 10.1007/s002530000482
(5) Kharoune, M.; Pauss, A.; Lebeault, J. Water Res. 2001, 35,1665. doi: 10.1016/S0043-1354(00)00448-6
(6) Davidson, J. M.; Creek, D. N. J. Environ. Monitor. 2000, 1, 31.
(7) Rosell, M.; Lacorte, S.; Barcelo, D. TrAC-Trend. Anal. Chem.2006, 25, 1016. doi: 10.1016/j.trac.2006.06.011
(8) Puziy, A.; Poddubnaya, O.; Kochkin, Y. N.; Vlasenko, N.;Tsyba, M. Carbon 2010, 48, 706. doi: 10.1016/j.carbon.2009.10.015
(9) Kadi, B. E.; Baronnet, F. J. Chim. Phys. 1995, 92, 706.
(10) Vlasenko, N. V.; Kochkin, Y. N.; Topka, A. V.; Strizhak, P. E.Appl. Catal. A-Gen. 2009, 362, 82. doi: 10.1016/j.apcata.2009.04.021
(11) Bielanski, A.; Dziembaj, R.; Malechka-Lubanska, A.;Pozniczek, J.; Hasik, M.; Drozdek, M. J. Catal. 1999, 185,363. doi: 10.1006/jcat.1999.2501
(12) Kovalchuk, T.; Kochkin, J. N.; Sfihi, H.; Zaitsev, V.; Fraissard,J. J. Catal. 2009, 263, 247. doi: 10.1016/j.jcat.2009.02.016
(13) Corma, A. J. Catal. 2003, 216, 298. doi: 10.1016/S0021-9517(02)00132-X
(14) Vlasenko, N.; Kochkin, Y. N.; Puziy, A. J. Mol. Catal. A-Chem.2006, 253, 192. doi: 10.1016/j.molcata.2006.03.041
(15) Collignon, F.; Poncelet, G. J. Catal. 2001, 202, 68. doi: 10.1006/jcat.2001.3280
(16) Li, Z. Y.; Zhu, Y.; Xiang, S. H. Chin. J. Catal. 2003, 24, 294.[李自运, 朱岩, 项寿鹤. 催化学报, 2003, 24, 294.]
(17) Liu, Y.; Zhang,W.; Pinnavaia, T. J. Angew. Chem. Int. Edit.2001, 40, 1255. doi: 10.1002/1521-3773(20010401)40:7<1255:AID-ANIE1255>3.0.CO;2-U
(18) Oudshoorn, O.; Janissen, M.; Van Kooten,W.; Jansen, J.; VanBekkum, H.; Van den Bleek, C.; Calis, H. Chem. Eng. Sci.1999, 54, 1413. doi: 10.1016/S0009-2509(99)00081-0
(19) Alcontara, R.; Alcontara, E.; Canoira, L.; Franco, M. J.; Martan,I.; Navarro, A. React. Kinet. Catal. Lett. 2000, 69, 239. doi: 10.1023/A:1005631313062
(20) Habenicht, C.; Kam, L. C.;Wilschut, M. J. Ind. Eng. Chem. Res. 1995, 34, 3784. doi: 10.1021/ie00038a015
(21) Larsen, G.; Lotero, E.; Morquez, M.; Silva, H. J. Catal. 1995,157, 645. doi: 10.1006/jcat.1995.1330
(22) Sola, L.; Pericos, M. A.; Cunill, F.; Izquierdo, J. F. Ind. Eng. Chem. Res. 1997, 36, 2012. doi: 10.1021/ie960753n
(23) Bohm, H.; Baronnet, F.; EloKadi, B. Phys. Chem. Chem. Phys.2000, 2, 1929. doi: 10.1039/B000415o
(24) Bolun, Y.; Sanba, Y.; Ruiqing, Y.; Miaoli, H.; Gaowen, Y.Chem. Eng. (China) 2000, 27, 5. doi: CNKI:SUN:IMIY.02000-05-006
(25) Boronat, M.; Viruela, P. M.; Corma, A. J. Am. Chem. Soc.2004, 126, 3300. doi: 10.1021/ja039432a
(26) Parr, R. G.; Yang,W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989; p 1.
(27) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098
(28) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
(29) Zheng, A. M.;Wang, L.; Chen, L.; Yue, Y.; Ye, C. H.; Lu, X.;Deng, F. ChemPhysChem 2007, 8, 231. doi: 10.1002/cphc.200600576
(30) Zheng, A. M.; Chen, L.; Yang, J.; Zhang, M. J.; Su, Y. C.; Yue,Y.; Ye, C. H.; Deng, F. J. Phys. Chem. B 2005, 109, 24273. doi: 10.1021/jp0527249
(31) Frisch, M. J.; Trucks,G.W.; Schlegel, H. B. et al. Gaussian 09,Revision B.01; Gaussian Inc.,Wallingford CT, 2010.
(32) Dogu, T.; Boz, N.; Aydin, E.; Oktar, N.; Murtezaoglu, K.; Dogu,G. Ind. Eng. Chem. Res. 2001, 40, 5044. doi: 10.1021/ie000922a

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 247-255.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] NING Hong-Yan, YANG Qi-Lei, YANG Xiao, LI Ying-Xia, SONG Zhao-Yu, LU Yi-Ren, ZHANG Li-Hong, LIU Yuan. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1865-1874.
[4] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[5] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[6] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[7] HUANG Ming-Hui, JIN Bi-Yao, ZHAO Lian-Hua, SUN Shi-Gang. Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(3): 563-572.
[8] YE Bin, ZHANG Jian, GAO Cai, TANG Jing-Chun. Experimental and Theoretical Analysis of 1H NMR on Double-Carbon Alcohol Aqueous Solutions[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1978-1988.
[9] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1785-1794.
[10] WAN Zhao-Min, WEI Xing, PENG Wei, YIN Zheng-Lei, XIAO Li, ZHUANG Lin. On-Line Electrochemical Transmission Infrared Spectroscopic Study of Pb2+ Enhanced C―C Bond Breaking in the Ethanol Oxidation Reaction[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1467-1472.
[11] TIAN Chun-Xia, YANG Jun-Shuai, LI Li, ZHANG Xiao-Hua, CHEN Jin-Hua. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1473-1481.
[12] ZHAO Jun-Feng, SUN Xiao-Li, HUANG Xu-Ri, LI Ji-Lai. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1175-1182.
[13] LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. Chim. Sin., 2016, 32(4): 950-960.
[14] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. Chim. Sin., 2016, 32(3): 717-722.
[15] CHENG Xiao-Meng, LI Yu, CHEN Zong, LI Hong-Ping, ZHENG Xiao-Fang. A Comparative Study on theNMR Relaxation of Methanol in Sub-and Super-Critical Mixtures of CO2 and Methanol[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2671-2677.