Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (07): 1615-1622    DOI: 10.3866/PKU.WHXB201204282
Kinetics and Thermodynamics of Adsorption of Chlorophenols onto β-Cyclodextrin Modified Chitosan
ZHOU Liang-Chun1, MENG Xiang-Guang1, LI Jian-Mei1, HU Wei2, LIU Bo1, DU Juan1
1College of Chemistry, Sichuan University, Chengdu 610064, P. R. China;
2. School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong 643000, Sichuan Province, P. R. China
Download:   PDF(1150KB) Export: BibTeX | EndNote (RIS)      


β-Cyclodextrin (β-CD) modified chitosan (CS), β-cyclodextrin-6-chitosan (CS-CD), was prepared and subsequently characterized by Fourier transform-infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. The CS-CD was used as an adsorbent for the adsorption of 2-chlorophenol (2-CP), 2,4-dichlorophenol (DCP), and 2,4,6-tuichlorophenol (TCP) from aqueous solutions. The Langmuir and Freundlich models were applied to describe the adsorption isotherms of the chlorophenols. The adsorption parameters have also been evaluated. The calculated maximum adsorption capacities for 2-CP, DCP, and TCP on CS-CD were 14.51, 50.68, and 74.29 mg·g-1, respectively, indicating that the introduction of the β-CD moiety greatly increased the adsorption efficiency. Kinetic studies showed that the adsorptions were fast, in that all of the adsorption equilibria were reached within one hour, and that the adsorption processes followed a pseudosecond- order kinetic model. The thermodynamic parameters ΔG0, ΔH0, and ΔS0 were also calculated. The negative ΔG0 values indicated that all of the adsorption processes were spontaneous. A possible adsorption mechanism has been provided and discussed. The effects of electrolytes and pH values on adsorption revealed that hydrogen bonding between the chlorophenols and CS-CD dominated the adsorption process, which was further confirmed by FT-IR analysis. The adsorbent could be regenerated by washing with ethanol. Following six cycles of usage and regeneration, the mass and adsorption efficiency of the CS-CD remained at 90% and 82%, respectively. CS, however, showed greater mass loss and efficiency reduction following regeneration.

Key wordsChitosan      β-Cyclodextrin      Adsorption      Chlorophenols      Thermodynamics      Kinetics     
Received: 05 March 2012      Published: 28 April 2012
MSC2000:  O647  

The project was supported by the National Natural Science Foundation of China (21073126) and Key Project of the Science and Technology Department of Zigong, Sichuan Province, China (10X01).

Corresponding Authors: MENG Xiang-Guang     E-mail:
Cite this article:

ZHOU Liang-Chun, MENG Xiang-Guang, LI Jian-Mei, HU Wei, LIU Bo, DU Juan. Kinetics and Thermodynamics of Adsorption of Chlorophenols onto β-Cyclodextrin Modified Chitosan. Acta Phys. -Chim. Sin., 2012, 28(07): 1615-1622.

URL:     OR

(1) Moradi, M.; Yamini, Y.; Esrafili, A.; Seidi, S. Talanta 2010, 82,1864. doi: 10.1016/j.talanta.2010.08.002
(2) Hamad, B. K.; Noor, A. M.; Afida, A. R.; Asri, M. N. M.Desalination 2010, 257, 1. doi: 10.1016/j.desal.2010.03.007
(3) Tsutsui, T.; Hayashi, N.; Maizumi, H.; Huff, J.; Barrett, J. C.Mutat. Res-Fund. Mol. M. 1997, 373, 113. doi: 10.1016/S0027-5107(96)00196-0
(4) Dominguez-Vargas, J. R.; Navarro-Rodriguez, J. A.; de Herediaa,J. B.; Cuerda-Correa, E. M. J. Hazard. Mater. 2009, 169, 302.doi: 10.1016/j.jhazmat.2009.03.075
(5) Sampa, M. H. D. O.; Rela, P. R.; Las Casas, A.; Mori, M. N.;Duarte, C. L. Radiat. Phys. Chem. 2004, 71, 459. doi: 10.1016/j.radphyschem.2004.03.023
(6) Jain, S.; Jayaram, R. V. Sep. Sci. Technol. 2007, 42, 2019. doi: 10.1080/15275920701313608
(7) Hu, Q. H.; Qiao, S. Z.; Haghseresht, F.;Wilson, M. A.; Lu, G.Q. Ind. Eng. Chem. Res. 2006, 45, 733. doi: 10.1021/ie050889y
(8) Maugans, C. B.; Akgerman, A. Water Res. 2003, 37, 319. doi: 10.1016/S0043-1354(02)00289-0
(9) Chiou, S. H.;Wu,W. T.; Huang, Y. Y.; Chung, T.W.J. Microencapsul. 2001, 18, 613. doi: 10.1080/02652040010019497
(10) Chiu, S. H.; Chung, T.W.; Giridhar, R.;Wu,W. T. Food Res. Int. 2004, 37, 217. doi: 10.1016/j.foodres.2003.12.001
(11) Milhome, M. A. L.; de Keukeleire, D.; Ribeiro, J. P.; Nascimento,R. F.; Carvalho, T. V.; Queiroz, D. C. Quim. Nova 2009, 32,2122. doi: 10.1590/S0100-40422009000800025
(12) Crini, G.; Badot, P. M. Prog. Polym. Sci. 2008, 33, 399. doi: 10.1016/j.progpolymsci.2007.11.001
(13) Dotto, G. L., Pinto, L. A. A. J. Hazard. Mater. 2011, 187, 164.doi: 10.1016/j.jhazmat.2011.01.016
(14) Guibal, E. Sep. Purif. Technol. 2004, 38, 43. doi: 10.1016/j.seppur.2003.10.004
(15) Zhou, L. M.; Shang, C.; Liu, Z. R. Acta Phys. -Chim. Sin. 2011,27, 677. [周利民, 尚超, 刘峙嵘. 物理化学学报, 2011, 27,677.] doi: 10.3866/PKU.WHXB20110314
(16) Zheng, J. N.; Xie, H. G.; Yu,W. T.; Liu, X. D.; Xie,W. Y.; Zhu,J.; Ma, X. J. Langmuir 2010, 26, 17156. doi: 10.1021/la1030203
(17) Zhang, X. Y.;Wang, Y. T.; Yi, Y. J. Appl. Polym. Sci. 2004, 94,860. doi: 10.1002/app.20759
(18) Prabaharan, M.; Mano, J. F. Carbohyd. Polym. 2006, 63, 153.doi: 10.1016/j.carbpol.2005.08.051
(19) Sharma, A. K.; Mishra, A. K. Int. J. Biol. Macromol. 2010, 47,410. doi: 10.1016/j.ijbiomac.2010.06.012
(20) Hall, L. D.; Yalpani, M. Carbohyd. Res. 1980, 83, C5.
(21) Ozmen, E. Y.; Sezgin, M.; Yilmaz, A.; Yilmaz, M. Bioresource Technol. 2008, 99, 526. doi: 10.1016/j.biortech.2007.01.023
(22) Li, J. M.; Meng, X. G.; Hu, C.W.; Du, J. Bioresource Technol.2009, 100, 1168. doi: 10.1016/j.biortech.2008.09.015
(23) Wang, H.; Fang, Y.; Ding, L. P.; Gao, L. N.; Hu, D. D. Thin Solid Films 2003, 440, 255. doi: 10.1016/S0040-6090(03)00812-5
(24) Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith,F. Anal. Chem. 1956, 28, 350. doi: 10.1021/ac60111a017
(25) Ghiaci, M.; Abbaspur, A.; Kia, R.; Seyedeyn-Azad, F. Sep. Purif. Technol. 2004, 40, 217. doi: 10.1016/j.seppur.2004.03.001
(26) Ma, J.W.;Wang, H.;Wang, F. Y.; Huang, Z. H. Sep. Sci. Technol. 2010, 45, 2329. doi: 10.1080/01496395.2010.504482
(27) Wu, X. B.;Wu, D. C.; Fu, R.W. J. Hazard. Mater. 2007, 147,1028. doi: 10.1016/j.jhazmat.2007.01.139
(28) Chen, C. Y.; Chen, C. C.; Chung, Y. C. Bioresource Technol.2007, 98, 2578. doi: 10.1016/j.biortech.2006.09.009
(29) Alkaram, U. F.; Mukhlis, A. A.; Al-Dujaili, A. H. J. Hazard. Mater. 2009, 169, 324. doi: 10.1016/j.jhazmat.2009.03.153
(30) Ho, Y. S.; McKay, G. Water Res. 2000, 34, 735. doi: 10.1016/S0043-1354(99)00232-8
(31) Feng, Y. J.; Zhang, Z. H.; Gao, P.; Su, H.; Yu, Y. L.; Ren, N. Q.J. Hazard. Mater. 2010, 175, 970. doi: 10.1016/j.jhazmat.2009.10.105
(32) Sheng, G. D.; Shao, D. D.; Ren, X. M.;Wang, X. Q.; Li, J. X.;Chen, Y. X.;Wang, X. K. J. Hazard. Mater. 2010, 178, 505. doi: 10.1016/j.jhazmat.2010.01.110
(33) Pan, J. M.; Zou, X. H.;Wang, X.; Guan,W.; Yan, Y. S.; Han, J.A. Chem. Eng. J. 2010, 162, 910. doi: 10.1016/j.cej.2010.06.039
(34) Liu, Y. J. Chem. Eng. Data 2009, 54, 1981. doi: 10.1021/je800661q
(35) Liu, Q. S.; Zheng, T.;Wang, P.; Jiang, J. P.; Li, N. Chem. Eng. J.2010, 157, 348. doi: 10.1016/j.cej.2009.11.013
(36) Hamdaoui, O.; Naffrechoux, E. J. Hazard. Mater. 2007, 147,401. doi: 10.1016/j.jhazmat.2007.01.023

[1] Paul GEERLINGS,Frank DE PROFT,Stijn FIAS. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 699-707.
[2] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[3] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[4] Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 168-176.
[5] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[6] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[7] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[8] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[9] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[10] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[11] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[12] Hai-Yang YU,Fang WANG,Qi-Chun LIU,Qing-Yu MA,Zheng-Gui GU. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 344-355.
[13] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[14] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[15] Ren YAN,Lu LAI,Zi-Qiang XU,Feng-Lei JIANG,Yi LIU. Thermodynamics of the Interactions between Quantum Dots and Proteins[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2377-2387.