Please wait a minute...
Acta Phys. -Chim. Sin.
ELECTROCHEMISTRY AND NEW ENERGY     
Studies of Oxidation Processes of Methanol on Hollow CoPt Nanospheres and In situ Electrochemical Fourier Transform Infrared Spectroscopy
ZHOU Xin-Wen1, GAN Ya-Li1, SUN Shi-Gang2
1. Department of Chemistry, College of Chemistry and Life Science, Three Gorges University, Yichang 443002, Hubei Province, P. R. China;
2. State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download:   PDF(1057KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Hollow CoPt nanospheres were synthesized by chemical reduction and galvanic displacement reactions. The catalyst showed good electrocatalytic activity for methanol oxidation. The results of transmission electron microscopy (TEM), energy dispersive spectromenter (EDS), and electrochemical cyclic voltammograms indicated that, in the process of electrochemical experiments carried in 0.1 mol·L-1 H2SO4 and 0.1 mol·L-1CH3OH, hollow CoPt nanospheres were dealloying, which induced the dissolution of elemental Co from the surface of the catalyst. After the dealloying process, more Pt active sites were exposed on the surface of the catalyst and the catalyst showed better catalytic activity, as well as enhanced structural stability. The electrooxidation of methanol on the hollow CoPt nanospheres was studied on the molecular level using in situ electrochemical Fourier transform infrared (FTIR) spectroscopy. The toxic intermediate CO observed on the CoPt nanorods displayed abnormal infrared effects (AIREs). The FTIR results were similar to those obtained in an earlier experiment on the hollow CoPt nanospheres using CO as a probe molecule. All the results suggested that the dealloying method would be a useful technique for regulating the composition and performance of the catalyst. In situ electrochemical FTIR was highlighted as a potential method for studying the oxidation processes of organic molecules. It is envisaged that these methods will be widely used in the field of fuel cell research.



Key wordsHollow CoPt nanosphere      Dealloying process      Methanol oxidation      In situ electrochemical FTIR spectroscopy      Fuel cell     
Received: 07 March 2012      Published: 03 May 2012
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (20833005).

Corresponding Authors: ZHOU Xin-Wen, SUN Shi-Gang     E-mail: xwzhou@ctgu.edu.cn; sgsun@xmu.edu.cn
Cite this article:

ZHOU Xin-Wen, GAN Ya-Li, SUN Shi-Gang. Studies of Oxidation Processes of Methanol on Hollow CoPt Nanospheres and In situ Electrochemical Fourier Transform Infrared Spectroscopy. Acta Phys. -Chim. Sin., 2012, 28(09): 2071-2076.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201205031     OR     http://www.whxb.pku.edu.cn/Y2012/V28/I09/2071

(1) Hou, M.; Yi, B. L. J. Electrochem. 2012, 18 (1), 1. [侯明,衣宝廉. 电化学, 2012, 18 (1), 1.]
(2) Sun, Y. B.; Zhuang, L.; Lu, J. T.; Hong, X. L.; Liu, P. F. J. Am. Chem. Soc. 2007, 129, 15465. doi: 10.1021/ja076177b
(3) Anderson, A. B.; Grantscharora, E.; Seong, S. J. Electrochem. Soc. 1996, 43 (6), 2075.
(4) Nakagawa, N.; Kaneda, Y.;Wagatsuma. M.; Tsujiguchi, T.J. Power Sources 2012, 199, 103. doi: 10.1016/j.jpowsour.2011.10.057
(5) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science2007, 316, 762.
(6) Tian, N.; Zhou, Z. Y.; Yu, N. F.; Sun, S. G. J. Am. Chem. Soc.2010, 132, 7580. doi: 10.1021/ja102177r
(7) Liu, B.; Liao, S. J.; Liang, Z. X. Prog. Chem. 2011, 23 (5),852. [刘宾, 廖世军, 梁振兴. 化学进展, 2011, 23 (5), 852.]
(8) Ataee-Esfahani, H.; Nemoto, Y.;Wang, L.; Yamauchi, Y. Chem. Commun. 2011, 47 (13), 3885. doi: 10.1039/c0cc05233g
(9) Kua, J.; Goddard,W. A. J. Am. Chem. Soc. 1999, 121, 10928.doi: 10.1021/ja9844074
(10) Chen, Z.W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J.Energ. Environ. Sci. 2011, 4 (9), 3167. doi: 10.1039/c0ee00558d
(11) Luo, B. M.; Yan, X. B.; Xu, S.; Xue, Q. J. Electrochim. Acta2012, 59 (1), 429.
(12) Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.;Wan, L. J.;Bai, C. L. Angew. Chem. Int. Edit. 2004, 43, 1540. doi: 10.1002/anie.200352956
(13) Ge, J.; Xing,W.; Xue, X.; Liu, C.; Lu, T.; Liao, J. J. Phys. Chem. C 2007, 111, 17305. doi: 10.1021/jp073666p
(14) Chen, G.; Xia, D.; Nie, Z.;Wang, Z.;Wang, L.; Zhang, L.;Zhang, J. Chem. Mater. 2007, 19, 1840. doi: 10.1021/cm062336z
(15) Zhou, X.W.; Zhang, R. H.; Zhou, Z. Y.; Sun, S. G. J. Power Sources 2011, 196, 5844. doi: 10.1016/j.jpowsour.2011.02.088
(16) Yan, L. L.; Jiang, Q. N.; Liu, D. Y.; Zhong, Y.;Wen, P. F.; Deng,X. C.; Zhong, Q. L.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin.2010, 26 (9), 2337. [颜亮亮, 姜庆宁, 刘德宇, 钟艳, 温飞鹏, 邓小聪, 钟起玲, 任斌, 田中群. 物理化学学报, 2010, 26 (9), 2337.] doi: 10.3866/PKU.WHXB20100835
(17) Minch, R.; Es-Souni, M. Chem. Commun. 2011, 47 (22), 6284.doi: 10.1039/c1cc11398d
(18) Chen, D. J.; Zhou, Z. Y.;Wang. Q.; Xiang, D. M.; Tian, N.; Sun,S. G. Chem. Commun. 2010, 46 (24), 4252. doi: 10.1039/c002964e
(19) Yu, X. F.;Wang, D. S.; Peng, Q.; Li, Y. D. Chem. Commun.2011, 47 (28), 8094. doi: 10.1039/c1cc12416a
(20) Zhou, X.W.; Chen, Q. S.; Zhou, Z. Y.; Sun, S. G. J. Nanosci. Nanotech. 2009, 9 (4), 2392. doi: 10.1166/jnn.2009.SE34
(21) Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H.; Toney,M. F.; Nilsson, A. Nat. Chem. 2010, 2 (6), 454. doi: 10.1038/nchem.623
(22) Chen,W.; Sun, S. G.; Si, D.; Chen, S. P. Acta Phys. -Chim. Sin.2003, 19 (5), 441. [陈卫, 孙世刚, 司迪, 陈声培. 物理化学学报, 2003, 19 (5), 441.] doi: 10.3866/PKU.WHXB20030513
(23) Li, J. T.; Chen, Q. S.; Sun, S. G. Electrochim. Acta 2007, 52,5725. doi: 10.1016/j.electacta.2006.12.082
(24) Tkach, I.; Panchenko, A.; Kaz, T.; Gogel, V.; Friedrich, K. A.;Roduner, E. Phys. Chem. Chem. Phys. 2004, 6, 5419.

[1] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 361-376.
[2] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[3] Xiao-Qiang. WANG,Jiang. LIU,Yong-Min. XIE,Wei-Zi. CAI,Ya-Peng. ZHANG,Qian. ZHOU,Fang-Yong. YU,Mei-Lin. LIU. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1614-1620.
[4] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[5] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1366-1378.
[6] Jun WANG,Zi-Dong WEI. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 886-902.
[7] Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.
[8] Yong-Min XIE,Xiao-Qiang WANG,Jiang LIU,Chang-Lin YU. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 386-392.
[9] Jin-Ling YIN,Jia LIU,Qing WEN,Gui-Ling WANG,Dian-Xue CAO. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 370-376.
[10] Qiao-Wan CHANG,Fei XIAO,Yuan XU,Min-Hua SHAO. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 9-17.
[11] Han XU,Ye-Xiang TONG,Gao-Ren LI. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2171-2184.
[12] Shan-Fu LU,Si-Kan PENG,Yan XIANG. Perspectives on the Research Progress of Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1859-1865.
[13] Jun-Lin MAI,De-Lin SUN,Xue-Bo QUAN,Li-Bo LI,Jian ZHOU. Mesoscopic Structure of Nafion-Ionic Liquid Membrane Using Dissipative Particle Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1649-1657.
[14] Jian-Hong LIU,Cun-Qin Lü,Chun JIN,Gui-Chang WANG. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 950-960.
[15] Yi YANG,Lai-Ming LUO,Juan-Juan DU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 834-847.