Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (07): 1721-1725    DOI: 10.3866/PKU.WHXB201205091
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Density Functional Theory Study on Li-Decorated B12N12 Cage for Hydrogen Storage Behavior
XU Wen-Jie, HU Zi-Yu, SHAO Xiao-Hong
College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
Download:   PDF(3018KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Hydrogen storage behavior in a Li-decorated B12N12 cage is investigated using first-principles calculations based on density functional theory (DFT). In the optimized adsorption structure, three Li atoms are adsorbed above the N atom of the B12N12 cage (Top-N site). Each Li atom is adsorbed on the bridge site of B-N between the four- and six-membered rings. In addition, each Li atom in the B12N12 cage adsorbs three H2 molecules, and two H2 molecules are adsorbed outside the B12N12 cage, with an average H2 adsorption energy of -0.14 eV. Inside the B12N12 cage, the adsorbed hydrogen remains in the molecular form. Our work shows that the maximum hydrogen storage capacity of Li-decorated B12N12 cage is 9.1% (w).



Key wordsFirst-principles      Decoration      B12N12      Hydrogen storage      Adsorption energy     
Received: 13 February 2012      Published: 09 May 2012
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (51102009) and Fundamental Research Funds for the Central Universities, China (JD1109).

Corresponding Authors: SHAO Xiao-Hong     E-mail: shaoxh@mail.buct.edu.cn
Cite this article:

XU Wen-Jie, HU Zi-Yu, SHAO Xiao-Hong. Density Functional Theory Study on Li-Decorated B12N12 Cage for Hydrogen Storage Behavior. Acta Phys. -Chim. Sin., 2012, 28(07): 1721-1725.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201205091     OR     http://www.whxb.pku.edu.cn/Y2012/V28/I07/1721

(1) Golberg, D.; Bando, Y.; Stephan, O.; Kurashima, K. Appl. Phys. Lett. 1998, 73, 2441. doi: 10.1063/1.122475
(2) Tang, C. C.; Bando, Y.; Ding, X. X.; Qi, S.; Golberg, D. J. Am. Chem. Soc. 2002, 124, 14550. doi: 10.1021/ja028051e
(3) Ma, R.; Bando, Y.; Zhu, H.; Sato, T.; Xu, C.;Wu, D. J. Am. Chem. Soc. 2002, 124, 7672. doi: 10.1021/ja026030e
(4) Oku, T.; Kuno, M. Diamond Relat. Mater. 2003, 12, 840. doi: 10.1016/S0925-9635(02)00326-6
(5) Oku, T.; Kuno, M.; Narita, I. J. Phys. Chem. Solids 2004, 65,549. doi: 10.1016/j.jpcs.2003.10.033
(6) Narita, I.; Oku, T. Diamond Relat. Mater. 2002, 11, 945. doi: 10.1016/S0925-9635(01)00536-2
(7) Oku, T.; Narita, I. Physica B 2002, 323, 216. doi: 10.1016/S0921-4526(02)00959-6
(8) Fowler, P.W.; Heine, T. Mitchell, D.; Schmidt, R.; Seifert, G.J. Chem. Soc. Faraday Trans. 1996, 92, 2197. doi: 10.1039/ft9969202197
(9) Chattrarj, P. K.; Bandaru, S.; Mondal, S. J. Phys. Chem. A 2011,115, 187. doi: 10.1021/jp109515a
(10) Wen, S. H.; Deng,W. Q.; Han, K. L. J. Phys. Chem. C 2008,112, 12195.
(11) Venkataramanan, N. S.; Note, R.; Sahara, R.; Mizuseki, H.;Kawazoe, Y. Chem. Phys. 2010, 377, 54. doi: 10.1016/j.chemphys.2010.08.015
(12) Shevlin, S. A.; Guo, Z. X. Appl. Phys. Lett. 2006, 89, 153104.doi: 10.1063/1.2360232
(13) (a) Yildirim, T.; Ciraci, S. Phys. Rev. Lett. 2005, 94, 175501.
(b) Durgun, E.; Ciraci, S.; Zhou,W.; Yildirim, T. Phys. Rev. Lett. 2006, 97, 226102.
(c) Durgun, E.; Jang, Y. R.; Ciraci, S. Phys. Rev. B 2007, 76,073413. doi: 10.1103/PhysRevB.76.073413
(14) (a) Deng,W. Q.; Xu, X.; Goddard,W. A. Phys. Rev. Lett. 2004,92, 166103.
(b) Shin,W. H.; Yang, S. H.; Kang, J. K.; Goddard,W. A. Appl. Phys. Lett. 2006, 88, 053111. doi: 10.1063/1.2168775
(15) (a) Zhao, Y. F.; Kim, Y. H.; Dillon, A. C.; Heben, M. J.; Zhang,S. B. Phys. Rev. Lett. 2005, 94, 155504.
(b) Zhao, Y. F.; Dillon, A. C.; Kim, Y. H.; Heben, M. J.; Zhang,S. B. Chem. Phys. Lett. 2006, 425, 273.
(c) Zhao, Y. F.; Lusk, M. T.; Dillon, A. C.; Heben, M. J.; Zhang,S. B. Nano Lett. 2008, 8, 157. doi: 10.1021/n1072321f
(16) Sun, O.;Wang, Q.; Jena, P.; Kawazoe, Y. J. Am. Chem. Soc.2005, 127, 14582. doi: 10.1021/ja0550125
(17) (a)Wu, X. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Phys. Rev. B2004, 69, 153411.
(b)Wu, X. J.; Yang, J. L.; Zeng, X. C. J. Chem. Phys. 2006,125, 044704.
(18) Sun, Q.;Wang, Q.; Jena, P. Nano Lett. 2005, 5, 1273. doi: 10.1021/nl050385p
(19) Beheshtian, J.; Bagheri, Z.; Kamfiroozi, M.; Ahmadi, A. J. Mol. Model. 2012, 18, 2653. doi: 10.007/s00894-011-1286-y
(20) Yang, S.; Yoon, M.;Wang, E.; Zhang, Z. J. Chem. Phys. 2008,129, 134707. doi: 10.1063/1.2981043

[1] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[2] Lei FANG,Mingjun SUN,Xinrui CAO,Zexing CAO. Mechanical and Optical Properties of a Novel Diamond-Like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor: a First-Principles Study[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 296-302.
[3] . Statistic Thermodynamic Model of Hydrogen Absorption on Metal Powders[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1108-1113.
[4] Yuan-Yuan LI,Xin-Xin ZHAO,Yi-Ming MI,Gai-Li SUN,Jian-Bao WU,Li-Li WANG. Effect of Y on the Properties of Graphene for Hydrogen Storage[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1658-1665.
[5] Xiao-Qing LU,Zi-Gang ZHAO,Ke LI,Shu-Xian WEI,Yuan-Yuan QU,Yong-Qiang NIU,Xue-Feng LIU. First-Principles Investigation of the Structural and Photoelectronic Properties of CH3NH3PbxSn1-xI3 Mixed Perovskites[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1439-1445.
[6] Chang-Shui HUANG,Yu-Liang LI. Structure of 2D Graphdiyne and Its Application in Energy Fields[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1314-1329.
[7] Shen-Dong XU,Liang FANG,Xiao-Li DING. Effect of Structural Factors on the Hydrogen Storage Capacity of Nonstoichiometric TiMnx Alloys[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 780-786.
[8] SUN Bo, LIU Hai-Feng, SONG Hai-Feng, ZHENG Hui. Microdynamics Simulations of the Hydrogen-Corrosion Resistance of Passivation Layers on Pu Surface[J]. Acta Phys. -Chim. Sin., 2015, 31(Suppl): 81-89.
[9] Zhi-Gang. WANG,Xiang-Ming. ZENG,Yang. ZHANG,Rao. HUANG,Yu-Hua. WEN. First-Principles Study of Effect of Strain on the Band Structure of ZnO Monolayer[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1677-1682.
[10] AN Wei, LIU Tian-Hui, WANG Chun-Hai, DIAO Chuan-Ling, LUO Neng-Neng, LIU Yong, QI Ze-Ming, SHAO Tao, WANG Yu-Yin, JIAO Huan, TIAN Guang-Shan, JING Xi-Ping. Assignment for Vibrational Spectra of BaTiO3 Ferroelectric Ceramic Based on the First-Principles Calculation[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1059-1068.
[11] LI Zhen-Jiang, MA Feng-Lin, ZHANG Meng, SONG Guan-Ying, MENG A-Lan. Preparation, Field Emission Characteristics and First-Principles Calculations of La-Doped or N-Doped SiC Nanowires[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1191-1198.
[12] LIANG Chu, LIANG Sheng, XIA Yang, HUANG Hui, GAN Yong-Ping, TAO Xin-Yong, ZHANG Wen-Kui. Progress in the Mg(NH2)2-2LiH Material for Hydrogen Storage[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 627-635.
[13] HUANG Hao-Jie, XU Jiang. First-Principles Study into the Effect of Substitutional Al Alloying on the Mechanical Properties and Electronic Structure of D88-Ti5Si3[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 253-260.
[14] YANG Jian-Hui, ZHANG Shao-Zheng, JI Jia-Lin, WEI Shi-Hao. Adsorption Activities of O, OH, F and Au on Two-Dimensional Ti2C and Ti3C2 Surfaces[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 369-376.
[15] Yan. SHAO,Fang-Ping. OUYANG,Sheng-Lin. PENG,Qi. LIU,Zhi-An. JIA,Hui. ZOU. First-Principles Calculations of Electronic Properties of Defective Armchair MoS2 Nanoribbons[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2083-2090.