Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (07): 1551-1555    DOI: 10.3866/PKU.WHXB201205093
Fabrication and Structure Characterization of Quasi-2-Dimensional Amorphous Carbon Structures
RAN Ke1,2, CHEN Qing1, ZUO Jian-Min2
1. Key Laboratory for Physics and Chemistry of Nanodevices, Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871;
2. Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Illinois 61801, USA
Download:   PDF(846KB) Export: BibTeX | EndNote (RIS)      


Quasi-2-dimensional total amorphous and half-amorphous carbon structures are fabricated from single-layer or few-layer of graphene via high-energy electron beam irradiation. Sample structures before and after electron beam irradiation are recorded by high resolution imaging and coherent nano-area electron diffraction using transmission electron microscopy (TEM). The atomic pair distribution functions of the sample are obtained from electron diffraction patterns. In the quasi-2-dimensional amorphous carbon material, the carbon hexagonal ring structure is not the main structural feature anymore, and the low order nearest distances between carbon atoms are slightly different from that in perfect graphene. Although the sample shows a long-range disordered atomic arrangement, it still holds short-range order and even middle-range order extending to 0.5 nm, as many zigzag carbon chains remain after electron beam irradiation.

Key wordsGraphene      Quasi-2 dimensional amorphous structure      Electron beam irradiation      High resolution imaging      Electron diffraction      Atomic pair distribution function     
Received: 17 April 2012      Published: 09 May 2012
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (60925003), Ministry of Science and Technology, China (2012CB932702), and Department of Energy, USA (DEFG02-01ER45923).

Corresponding Authors: CHEN Qing, ZUO Jian-Min     E-mail:;
Cite this article:

RAN Ke, CHEN Qing, ZUO Jian-Min. Fabrication and Structure Characterization of Quasi-2-Dimensional Amorphous Carbon Structures. Acta Phys. Chim. Sin., 2012, 28(07): 1551-1555.

URL:     OR

(1) Zachariasen,W. H. J. Am. Chem. Soc. 1932, 54, 3841. doi: 10.1021/ja01349a006
(2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896
(3) Mermin, N. D. Phys. Rev. 1968, 176, 250. doi: 10.1103/PhysRev.176.250
(4) Li, X. S.; Cai,W.W.; An, J. H.; Kim, S. Y.; Nah, J. H.; Yang, D.X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S.K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312. doi: 10.1126/science.1171245
(5) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.Y.; De, S.; Mcgovern, I. T.; Holland, B.; Byrne, M.; Gunko, Y.K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.;Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.;Coleman, J. N. Nat. Nanotechnol. 2008, 3, 563.
(6) Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. ACS Nano2011, 5, 26. doi: 10.1021/nn102598m
(7) Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S.Nature 2004, 430, 870. doi: 10.1038/nature02817
(8) Girit, C. O.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski,C.; Yang, L.; Park, C. H.; Crommie, M. F.; Cohen, M. L.; Louie,S. G.; Zettl, A. Science 2009, 323, 1705. doi: 10.1126/science.1166999
(9) Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.;Whitney,W. S.; Levendorf, M. P.; Kevek, J.W.; Garg, S.; Alden,J. S.; Hustedt, C. J.; Zhu, Y.; Park, J.; McEuen, P. L.; Muller, D.A. Nature 2011, 469, 389. doi: 10.1038/nature09718
(10) Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. Nat. Nanotechnol. 2010, 5, 326. doi: 10.1038/nnano.2010.53
(11) Ying, H.;Wang, Z. Y.; Guo, Z. D.; Shi, Z. J.; Yang, S. F. Acta Phys. -Chim. Sin. 2011, 27, 1482. [应红, 王志永, 郭政铎,施祖进, 杨上峰. 物理化学学报, 2011, 27, 1482.] doi: 10.3866/PKU.WHXB20110630
(12) Gomez-Navarro, C.; Meyer, J. C.; Sundaram, R. S.; Chuvilin,A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Nano Lett.2010, 10, 1144. 10.1021/nl9031617
(13) Chuvilin, A.; Kaiser, U.; Bichoutskaia, E.; Besley, N. A.;Khlobystov, A. N. Nat. Chem. 2010, 2, 450. doi: 10.1038/nchem.644
(14) Ran, K.; Zuo, J. M.; Chen, Q.; Shi, Z. J. ACS Nano 2011, 4,3367.
(15) Kotakoski, J.; Krasheninnikov, A. V.; Kaiser, U.; Meyer, J. C.Phys. Rev. Lett. 2011, 106, 105505. doi: 10.1103/PhysRevLett.106.105505
(16) Warner, J. H.; Rummeli, M. H.; Ge, L.; Gemming, T.;Montanari, B.; Harrison, N. M.; Buchner, B.; Briggs, G. A. D.Nat. Nanotechnol. 2009, 4, 500. doi: 10.1038/nnano.2009.194
(17) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.;Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451. doi: 10.1073/pnas.0502848102
(18) Meyer, J. C.; Kisielowski, C.; Erni, R.; Rossell, M. D.;Crommie, M. F.; Zettl, A. Nano Lett. 2008, 8, 3582. doi: 10.1021/nl801386m
(19) Egerton, R. F.; Li, P.; Malac, M. Micron 2004, 35, 399. doi: 10.1016/j.micron.2004.02.003
(20) Krasheninnikov, A. V.; Banhart, F. Nat. Mater. 2007, 6, 723. doi: 10.1038/nmat1996
(21) Zuo, J. M.; Gao, M.; Tao, J.; Li, B. Q.; Twesten, R.; Petrov, I.Microsc. Res. Techniq. 2004, 64, 347. doi: 10.1002/jemt.20096
(22) Wen, J. G.; Mabon, J.; Lei, C. H.; Burdin, S.; Sammann, E.;Petrov, I.; Shah, A. B.; Chobpattana, V.; Zhang, J.; Ran, K.;Zuo, J. M.; Mishina, S.; Aoki, T. Microsc. Microanal. 2010, 16,183. doi: 10.1017/S1431927610000085
(23) Cockayne, D. J. H. Annu. Rev. Mater. Sci. 2007, 37, 159. doi: 10.1146/annurev.matsci.35.082803.103337
(24) Egami, T.; Billinge, J. L. Underneath the Bragg Peaks: Structural Analysis of Complex Materials; Pergamon:Amsterdam, 2003; pp 55-99.
(25) Petkov, V.; Jeong, I. K.; Chung, J. S.; Thorpe, M. F.; Kycia, S.;Billinge, S. J. L. Phys. Rev. Lett. 1999, 83, 4089. doi: 10.1103/PhysRevLett.83.4089
(26) Petkov, V.; Difrancesco, R. G.; Billinge, S. J. L.; Acharya, M.;Foley, H. C. Philos. Mag. B 1999, 79, 1519.
(27) Billinge, S. J. L.; DiFrancesco, R. G.; Kwei, G. H.; Neumeier, J.J.; Thompson, J. D. Phys. Rev. Lett. 1996, 77, 715. doi: 10.1103/PhysRevLett.77.715
(28) Jeong, I. K.; Proffen, T.; Mohiuddin-Jacobs, F.; Billinge, S. J. L.J. Phys. Chem. A 1999, 103, 921. doi: 10.1021/jp9836978
(29) Ruan, C. Y.; Murooka, Y.; Raman, R. K.; Murdick, R. A.;Worhatch, R. J.; Pell, A. Microsc. Microanal. 2009, 15, 323.doi: 10.1017/S1431927609090709
(30) Chen, H.; Zuo, J. M. Acta Materialia 2007, 5, 1617.
(31) McKenzie, D. R.; Green, D. C.; Swift, P. D. Thin Solid Films1990, 193, 418. doi: 10.1016/S0040-6090(05)80052-5
(32) Li, L.; Reich, S.; Robertson, J. Phys. Rev. B 2005, 72, 184109.doi: 10.1103/PhysRevB.72.184109

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[6] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[7] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[8] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[9] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[10] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[11] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[12] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[13] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.
[14] WANG Xu-Chun, LI Jin-Ze, LI Guang-Yong, WANG Jin, ZHANG Xue-Tong, GUO Qiang. Fabrication and Performance of Various Aerogel Microspheres[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2141-2152.
[15] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.