Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (07): 1777-1782    DOI: 10.3866/PKU.WHXB201205113
Influence of Iron Oxide Doping on the Photocatalytic Degradation of Organic Dye X3B over Tungsten Oxide
BI Dong-Qin, XU Yi-Ming
Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
Download:   PDF(2156KB) Export: BibTeX | EndNote (RIS)      


Development of a highly active visible-light-driven photocatalyst is a challenge for chemical use of solar energy. In this work, WO3 was simply mixed with Fe2O3, and used thereafter for the photocatalytic degradation of organic dye X3B in the presence of H2O2. It was observed that the composite activity was greatly influenced by the catalyst sintering temperature, and by Fe2O3 content in the mixed oxide. The optimum sintering temperature and Fe2O3 loading were 400 ° C and 1.0% (w), respectively. Through a spin trapping electron paramagetic spectroscopy, it was found that the composite produced a significantly larger amount of hydroxyl radicals, in relative to Fe2O3 and WO3. It is proposed that the observed synergistic effect between Fe2O3 and WO3 is due to the charge transfer between the two oxides, improving the separation of the photogenerated charge carriers, and thus accelerating the photocatalytic degradation of X3B.

Key wordsPhotocatalysis      Tungsten oxide      Iron oxide      Synergism      Organic dye      Degradation     
Received: 27 March 2012      Published: 11 May 2012
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (20873124) and National Key Basic Research Program of China (973) (2011CB936003).

Corresponding Authors: XU Yi-Ming     E-mail:
Cite this article:

BI Dong-Qin, XU Yi-Ming. Influence of Iron Oxide Doping on the Photocatalytic Degradation of Organic Dye X3B over Tungsten Oxide. Acta Phys. Chim. Sin., 2012, 28(07): 1777-1782.

URL:     OR

(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
(2) Kabra, K.; Chaudhary, R.; Sawhney, R. L. Ind. Eng. Chem. Res.2004, 43, 7683. doi: 10.1021/ie0498551
(3) Koka, M.; Sahin, M. Int. J. Hydrog. Energy 2002, 27, 363. doi: 10.1016/S0360-3199(01)00133-1
(4) Serrano, B.; Lasa, H. Ind. Eng. Chem. Res.1997, 36, 4705. doi: 10.1021/ie970104r
(5) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K.Renewable and Sustainable Energy Rev. 2007, 11, 401. doi: 10.1016/j.rser.2005.01.009
(6) Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Chem. Rev. 1995, 95,735. doi: 10.1021/cr00035a013
(7) Murakami, Y.; Endo, K.; Ohta, I.; Nosaka, A. Y.; Nosaka, Y.J. Phys. Chem. C 2007, 111, 11339. doi: 10.1021/jp0722049
(8) Kumar, S. G.; Devi, L. G. J. Phys. Chem. A 2011, 115, 13211.doi: 10.1021/jp204364a
(9) Tachikawa, T.; Majima, T. Langmuir 2009, 25, 7791. doi: 10.1021/la900790f
(10) Zhao, Z. G.; Miyauchi, M. Angew. Chem. Int. Edit. 2008, 47,7051. doi: 10.1002/anie.200802207
(11) Santato, C.; Ulmann, M.; Augustynski, J. Adv. Mater. 2001, 13,511. doi: 10.1002/1521-4095(200104)13:7<511:AIDADMA511>3.0.CO;2-W
(12) Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J.J. Am. Chem. Soc. 2001, 123, 10639. doi: 10.1021/ja011315x
(13) Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128,15714. doi: 10.1021/ja064380l
(14) Abe, R.; Takami, H.; Murakami, N.; Ohtani, B. J. Am. Chem. Soc. 2008, 130, 7780. doi: 10.1021/ja800835q
(15) Kim, J.; Lee, C.W.; Choi,W. Environ. Sci. Technol. 2010, 44,6849. doi: 10.1021/es101981r
(16) Darwent, J. R.; Mills, A. J. Chem. Soc. Faraday Trans. 1982,78, 359. doi: 10.1039/f29827800359
(17) Sclafani, A.; Palmisano, L.; Marci, G.; Venezia, A. M. Sol. Energy Mater. Sol. Cells 1998, 51, 203. doi: 10.1016/S0927-0248(97)00215-8
(18) Arai, T.; Horiguchi, M.; Yanagida, M.; Gunji, T.; Sugihara, H.;Sayama, K. Chem. Commun. 2008, 5565. doi: 10.1039/b811657a
(19) Sun, S.;Wang,W.; Zeng, S.; Shang, M.; Zhang L. J. Harzard. Mater. 2010, 178, 427. doi: 10.1016/j.jhazmat.2010.01.098
(20) He, T.; Yao, J. N. J. Mater. Chem. 2007, 17, 4547. doi: 10.1039/b709380b
(21) Du,W.; Xu, Y.;Wang, Y. Langmuir 2008, 24, 175. doi: 10.1021/la7021165
(22) Wang, Y.; Du,W.; Xu, Y. Langmuir 2009, 25, 2895. doi: 10.1021/la803714m
(23) Bi, D.; Xu, Y. Langmuir 2011, 27, 9359. doi: 10.1021/la2012793
(24) Pope, M. T.; Varga, G. M. Inorg. Chem. 1966, 5, 1249. doi: 10.1021/ic50041a038
(25) Yang, L.; Xiao, Y.; Liu, S.; Li, Y.; Cai, Q.; Luo, S.; Zeng, G.Appl. Catal. B: Environ. 2010, 94, 142. doi: 10.1016/j.apcatb.2009.11.002
(26) Adán, C.; Bahamonde, A.; Fernández-García, M.; Martínez-Arias, A. Appl. Catal. B 2007, 72, 11. doi: 10.1016/j.apcatb.2006.09.018
(27) Sherman, D. M. Geochim. Cosmochim. Acta 2005, 69, 3249.doi: 10.1016/j.gca.2005.01.023
(28) Thompson, T. L.; Yates, J. T. Chem. Rev. 2006, 106, 4428. doi: 10.1021/cr050172k

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] LIAN Chao, ZHANG Kai, WANG Yuan. Catalytic Properties of Platinum Nanoclusters Supported on Iron Oxides for the Solvent-Free Hydrogenation of Halonitrobenzene[J]. Acta Phys. Chim. Sin., 2017, 33(5): 984-992.
[3] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[4] JI Tian-Yi, LIU Yan-Cheng, ZHAO Jian-Feng, XU Gang, WANG Wen-Feng, WU Ming-Hong. Radical-Induced Degradation of Fluoxetine in Aqueous Solution by Pulse and Steady-State Radiolysis Studies[J]. Acta Phys. Chim. Sin., 2017, 33(4): 823-828.
[5] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[6] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[7] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.
[8] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[9] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[10] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[11] NIU Hui-Chang, JI Dan, LIU Nai-An. Method for Optimizing the Kinetic Parameters for the Thermal Degradation of Forest Fuels Based on a Hybrid Genetic Algorithm[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2223-2231.
[12] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[13] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[14] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[15] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.