Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (08): 1854-1860    DOI: 10.3866/PKU.WHXB201205151
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Hydrogen Storage Properties of B12Sc4 and B12Ti4 Clusters
MA Li-Juan, WANG Jian-Feng, JIA Jian-feng, WU Hai-Shun
School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, Shanxi Province, P. R. China
Download:   PDF(3938KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

The structures and hydrogen storage properties of two stable B12Sc4 and B12Ti4 clusters have been investigated using ab initio calculations. No metal atom clustering occurs in the clusters. The B12Sc4 hosts 12 H2 to achieve 7.25% (mass fraction) hydrogen storage capacity with an average binding energy (ABE) of -10.4 kJ·mol-1 per H2, while the B12Ti4 can only host 8 H2 (4.78%, mass fraction) with a higher ABE (-50.2 kJ·mol-1 per H2). High hydrogen pressure is needed for B12Sc4 to hold 12 H2, even at 77 K. Electronic structure analysis indicates that the Kubas interaction in the B12Ti4-nH2 complex is much stronger than that in the B12Sc4-nH2 complex.



Key wordsBoron cluster      Metal doped      Hydrogen storage      Adsorption      Ab initio calculation     
Received: 15 January 2012      Published: 15 May 2012
MSC2000:  O641  
Fund:  

This work was supported by the National Basic Research 973 Pre-research Progr?am of China (2010CB635110) and Nature Science Foundation of Shanxi Province, China (2010011012-2).

Corresponding Authors: JIA Jian-feng     E-mail: jjf_sxtu@yahoo.com.cn
Cite this article:

MA Li-Juan, WANG Jian-Feng, JIA Jian-feng, WU Hai-Shun. Hydrogen Storage Properties of B12Sc4 and B12Ti4 Clusters. Acta Phys. Chim. Sin., 2012, 28(08): 1854-1860.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201205151     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I08/1854

(1) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353. doi: 10.1038/35104634
(2) Coontz, R.; Hanson, B. Science 2004, 305, 957. doi: 10.1126/science.305.5686.957
(3) Crabtree, G.W.; Dresselhaus, M. S.; Buchanan, M. V. Phys. Today 2004, 57, 39. doi: 10.1063/1.1878333
(4) Tao, Z. L.; Peng, B.; Liang, J.; Cheng, F. Y.; Chen, J. Meter. China 2009, 28, 7. [陶占良, 彭博, 梁静, 程方益,陈军. 中国材料进展, 2009, 28, 7.]
(5) Xu,W.; Tao, Z. L.; Chen, J. Prog. Chem. 2006, 18, 2. [许炜,陶占良, 陈军. 化学进展, 2006, 18, 2.]
(6) Zhao, X. B.; Xiao, B.; Fletcher, A. J.; Thomas, K. M. J. Phys. Chem. B 2005, 109, 8880.
(7) Qu, D. Chem. Eur. J. 2008, 14, 1040. doi: 10.1002/chem.200701042
(8) Zaluska, A.; Zaluski, L.; Ström-Olsen, J. O. Appl. Phys. A 2001,72, 157. doi: 10.1007/s003390100783
(9) Bogdanovic, B.; Schwickardi, M. J. Alloy. Compd. 1997, 253, 1.doi: 10.1016/S0925-8388(96)03049-6
(10) Orimo, S.; Nakamori, Y.; Eliseo, J. R.; Zuttel, A.; Jensen, C. M.Chem. Rev. 2007, 107, 4111. doi: 10.1021/cr0501846
(11) Ning, H.; Tao, X. M.;Wang, M. M.; Cai, J. Q.; Tan, M. Q. Acta Phys. -Chim. Sin. 2010, 26, 2267. [宁华, 陶向明, 王芒芒,蔡建秋, 谭明秋. 物理化学学报, 2010, 26, 2267.] doi: 10.3866/PKU.WHXB20100828
(12) Li, G. X.; Chen, X.W.; Bai, J. D.; Lan, Z. Q.; Guo, J. Acta Phys. -Chim. Sin. 2010, 26, 1448. [黎光旭, 陈晓伟, 白加栋,蓝志强, 郭进. 物理化学学报, 2010, 26, 1448.] doi: 10.3866/PKU.WHXB20100540
(13) Wang, H.; Gao, Q.; Hu, J. J. Am. Chem. Soc. 2009, 131, 7016.doi: 10.1021/ja8083225
(14) Miao, Y. L.; Sun, H.;Wang, L.; Sun, Y. X. Acta Phys. -Chim. Sin. 2012, 28, 547. [苗延霖, 孙淮, 王琳, 孙迎新. 物理化学学报, 2012, 28, 547.] doi: 10.3866/PKU.WHXB201112301
(15) Yang, Z.; Xia, Y.; Robert, M. J. Am. Chem. Soc. 2007, 129,1673. doi: 10.1021/ja067149g
(16) Koh, K.;Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc.2009, 131, 4184. doi: 10.1021/ja809985t
(17) Zhao, D.; Daren, J. T.; Yuan, D.; Zhou, H. C. Accounts Chem. Res. 2011, 44, 123 and references therein. doi: 10.1021/ar100112y
(18) Zhao, Y.; Kim, Y. H.; Dillon, A. C.; Heben, M. J.; Zhang, S. B.Phys. Rev. Lett. 2005, 94, 155504. doi: 10.1103/PhysRevLett.94.155504
(19) Yildirim, T.; Ciraci, S. Phys. Rev. Lett. 2005, 94, 175501. doi: 10.1103/PhysRevLett.94.175501
(20) Kubas, G. J. J. Organomet. Chem. 2001, 635, 37. doi: 10.1016/S0022-328X(01)01066-X
(21) Sun, Q.;Wang, Q.; Jena, P.; Kawazoe, Y. J. Am. Chem. Soc.2005, 127, 14582. doi: 10.1021/ja0550125
(22) Sun, Q.; Jena, P.;Wang, Q.; Marquez, M. J. Am. Chem. Soc.2006, 128, 9741. doi: 10.1021/ja058330c
(23) Wang, Q.; Sun, Q.; Jena, P.; Kawazoe, Y. J. Chem. Theory Comput. 2009, 5, 374. doi: 10.1021/ct800373g
(24) Chandrakumar, K. R. S.; Ghosh, S. K. Nano Lett. 2008, 8, 13.doi: 10.1021/nl071456i
(25) Liu,W.; Zhao, Y. H.; Li, Y.; Jiang, Q.; Lavernia, E. J. J. Phys. Chem. C 2009, 113, 2028. doi: 10.1021/jp8091418
(26) Rabilloud, F. J. Phys. Chem. A 2010, 114, 7241. doi: 10.1021/jp103124w
(27) Meng, S.; Kaxiras, E.; Zhang, Z. Nano Lett. 2007, 7, 663. doi: 10.1021/nl062692g
(28) Zhao,Y. F.; Lusk, M. T.; Dillon, A. C.; Heben, M. J.; Zhang, S.B. Nano Lett. 2008, 8, 157. doi: 10.1021/nl072321f
(29) Li,Y. C.; Zhou, G.; Li, J.; Gu, B. L.; Duan,W. H. J. Phys. Chem. C 2008, 112, 19268. doi: 10.1021/jp807156g
(30) Wu, G.;Wang, J. L.; Zhang, X.; Zhu, L. J. Phys. Chem. C 2009,113, 7052. doi: 10.1021/jp8113732
(31) Li, M.; Li, Y.; Zhou, Z.; Shen, P.; Chen, Z. Nano Lett. 2009, 9,1944. doi: 10.1021/nl900116q
(32) Zhao, J.;Wang, L.; Li, F.; Chen, Z. J. Phys. Chem. A 2010, 114,9969. doi: 10.1021/jp1018873
(33) Li, F.; Zhao, J.; Chen, Z. Nanotechnology 2010, 21, 134006.doi: 10.1088/0957-4484/21/13/134006
(34) Wu, H. S.; Qin, X. F.; Xu, X. H.; Jiao, H.; Schelyer, P. v. R.J. Am. Chem. Soc. 2005, 127, 2334. doi: 10.1021/ja046740f
(35) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
(36) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(37) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision C.01; Gaussian Inc.: Pittsburgh, PA, 2004.
(38) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 415.doi: 10.1021/ct049851d
(39) Mohan, N.; VIjayalakshmi, K. P.; Koga, N.; Suresh, C. H.J. Comput. Chem. 2010, 31, 2874.
(40) Boustani, I. Phys. Rev. B 1997, 55, 16426. doi: 10.1103/PhysRevB.55.16426
(41) http:/cp2k.berlios.de.
(42) Balasubramanina, K. Chem. Phys. Lett. 1987, 135, 288. doi: 10.1016/0009-2614(87)85158-8
(43) Bauschlicher, C.W., Jr.;Walch, S. P. J. Chem. Phys. 1982, 76,4560. doi: 10.1063/1.443532
(44) Thomas, J. R.; Quelch, G. E.; Seidl, E. T.; Schaefer, H. F., III.J. Chem. Phys. 1992, 96, 6857. doi: 10.1063/1.462575
(45) Lukens,W.W., Jr.; Matsunaga, P. T.; Andersen, R. A.Organometallics 1998, 17, 5240. doi: 10.1021/om980601n
(46) Pattiasina, J.W.; Bolhuis, F.; Teuben, J. H. Angew. Chem. Int. Edit. 1987, 26, 330. doi: 10.1002/anie.198703301

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[3] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[4] WU Guang-Xin, PENG Wang-Jun, ZHANG Jie-Yu. Statistic Thermodynamic Model of Hydrogen Absorption on Metal Powders[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1108-1113.
[5] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[6] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[7] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[8] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[9] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[10] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[11] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[12] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[13] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.
[14] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2133-2145.
[15] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1933-1940.