Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (08): 1899-1905    DOI: 10.3866/PKU.WHXB201205152
ELECTROCHEMISTRY AND NEW ENERGY     
Improved Electrochemical Stability of Zn-Doped LiNi1/3Co1/3Mn1/3O2 Cathode Materials
LI Jie-Bin1,2, XU You-Long1, DU Xian-Feng1, SUN Xiao-Fei1, XIONG Li-Long1
1. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049, P. R. China;
2. Shaanxi Applied Physics and Chemistry Research Institute; Xi'an 710061, P. R. China
Download:   PDF(985KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Highly stable Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0, 0.02, 0.05) cathode materials doped with Zn are synthesized by solid-state reactions with co-precipitated precursors. Cyclic voltammetry (CV) curves reveal that the potential difference between oxidation and reduction decreases to 0.09 V, and from electrochemical impedance spectra (EIS) curves, the impedance of LiNi1/3Co1/3Mn1/3O2 cathode materials is reduced from 266 to 102 Ω. The diffusion coefficients of Li+ ions in intercalation processes increase from 1.20×10-11 to 2.54×10-11 cm2·s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2 is stable at 0.3C (constant charge/discharge) at a high cut-off potential of 4.6 V vs Li/Li+. It has a second discharge capacity of 176.2 mAh·g-1 at 0.3C and 142 mAh·g-1 at 3C, and keep almost no decay after 100 cycles at room temperature. Furthermore, its average capacity loss per cycle at 55 °C is 0.20%, which is lower compared with 0.54% for LiNi1/3Co1/3Mn1/3O2 and 0.38% for Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2 after 100 cycles. The improved electrochemical stability of Zn-doped LiNi1/3Co1/3Mn1/3O2 is attributed to the reduced electrode polarization and impedance values, and an increased Li+ ion diffusion coefficient.



Key wordsLithium nickel cobalt manganese oxide      High cut-off voltage      Zn-doping      Cathode material      Lithium ion battery     
Received: 15 March 2012      Published: 15 May 2012
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation (50902109).

Corresponding Authors: XU You-Long     E-mail: ylxuxjtu@mail.xjtu.edu.cn
Cite this article:

LI Jie-Bin, XU You-Long, DU Xian-Feng, SUN Xiao-Fei, XIONG Li-Long. Improved Electrochemical Stability of Zn-Doped LiNi1/3Co1/3Mn1/3O2 Cathode Materials. Acta Phys. Chim. Sin., 2012, 28(08): 1899-1905.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201205152     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I08/1899

(1) Ohzuku, T.; Makimura, Y. Chem. Lett. 2001, 7, 642.
(2) Hwang, B. J.; Tsai, Y.W.; Carlier, D.; Ceder, G. Chem. Mater.2003, 15, 3676. doi: 10.1021/cm030299v
(3) Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Electrochim. Acta 2002, 48, 145. doi: 10.1016/S0013-4686(02)00593-5
(4) Wu, F.;Wang, M.; Su, Y. F.; Chen, S. Acta Phys. -Chim. Sin.2009, 25, 629. [吴峰, 王萌, 苏岳峰, 陈实. 物理化学学报, 2009, 25, 629.] doi: 10.3866/PKU.WHXB20090411
(5) Tu, J. P.;Wu, H. M.; Chen, X. T.; Yuan, Y. F.; Li, Y.; Zhao, X.B.; Cao, G. S. J. Power Sources 2006, 159, 291. doi: 10.1016/j.jpowsour.2006.04.032
(6) Chen, J.;Wang, S.; Whittingham, M. S. J. Power Sources 2007,174, 442. doi: 10.1016/j.jpowsour.2007.06.189
(7) Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. J. Power Sources 2006, 159, 263. doi: 10.1016/j.jpowsour.2006.04.134
(8) Koyama, Y.; Tanaka, I.; Adachi, H.; Makimura, Y.; Ohzuku, T.J. Power Sources 2003, 119, 644. doi: 10.1016/S0378-7753(03)00194-0
(9) Yoon,W. S.; Grey, C. P.; Balasubramanian, M.; Yang, X. Q.;Fischer, D. A.; McBreen, J. Electrochem. Solid State Lett. 2004,7, A53.
(10) Kim, J. M.; Chung, H. T. Electrochim. Acta 2004, 49, 937. doi: 10.1016/j.electacta.2003.10.005
(11) Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. J. Electrochem. Soc. 2004, 151, A1324.
(12) Yabuuchi, N.; Ohzuku, T. J. Power Sources 2003, 119, 171. doi: 10.1016/S0378-7753(03)00173-3
(13) Chebiam, R. V.; Prado, F.; Manthiram, A. Chem. Mater. 2001,13, 2951. doi: 10.1021/cm0102537
(14) Kim, H. S.; Kong, M.; Kim, K.; Kim, I. J.; Gu, H. B. J. Power Sources 2007, 171, 917. doi: 10.1016/j.jpowsour.2007.06.028
(15) Na, S. H.; Kim, H. S.; Moon, S. I. Solid State Ionics 2005, 176,313. doi: 10.1016/j.ssi.2004.08.016
(16) Sun, Y. K.; Lee, Y. S.; Yoshio, M.; Amine, K. Electrochem. Solid State Lett. 2002, 5, L1.
(17) Ceder, G.; Chiang, Y. M.; Sadoway, D. R.; Aydinol, M. K.; Jang,Y. I.; Huang, B. Nature 1998, 392, 694. doi: 10.1038/33647
(18) Zou, M. J.; Yoshio, M.; Gopukumar, S.; Yamaki, J. Chem. Mater. 2003, 15, 4699. doi: 10.1021/cm0347032
(19) Chen, Y. H.; Chen, R. Z.; Tang, Z. Y.;Wang, L. J. Alloy. Compd.2009, 476, 539. doi: 10.1016/j.jallcom.2008.09.055
(20) Ren, H. B.; Li, X.; Peng, Z. H. Electrochim. Acta 2011, 56,7088. doi: 10.1016/j.electacta.2011.05.104
(21) Milewska, A.; Molenda, M.; Mokenda, J. Solid State Ionics2011, 192, 313. doi: 10.1016/j.ssi.2010.11.026
(22) Holleman, A. F.;Wiberg, E.;Wiberg, N. Lehrbuch der Anorganischen Chemie; Gruyter: Berlin, 1995.
(23) Fey, G. T. K.; Chen, J. G.; Subramanian, V.; Osaka, T. J. Power Sources 2002, 112, 384. doi: 10.1016/S0378-7753(02)00400-7
(24) Li, J. B.; Xu, Y. L.; Xiong, L. L.;Wang, J. P. Acta Phys. -Chim. Sin. 2011, 27, 2593. [李节宾, 徐友龙, 熊礼龙, 王景平. 物理化学学报, 2011, 27, 2593.] doi: 10.3866/PKU.WHXB20111104
(25) Jouanneau, S.; Eberman, K.W.; Krause, L. J.; Dahn, J. R.J. Electrochem. Soc. 2003, 150, A1637.
(26) Kim, J. H.; Yoon, C. S.; Sun, Y. K. J. Electrochem. Soc. 2003,150, A538.
(27) Pouillerie, C.; Perton, F.; Biensan, P.; Peres, J. P.; Broussely, M.;Delmas, C. J. Power Sources 2001, 96, 293. doi: 10.1016/S0378-7753(00)00653-4
(28) Liu, L.; Sun, K. N.; Zhang, N. Q.; Yang, T. Y. J. Solid State Electrochem. 2009, 13, 1381. doi: 10.1007/s10008-008-0695-z
(29) Xia, H.; Lu, L.; Lai, M. O. Electrochim. Acta 2009, 54, 5986.doi: 10.1016/j.electacta.2009.02.071
(30) Xiong, L. L.; Xu, Y. L.; Zhang, C.; Zhang, Z.W.; Li, J. B.J. Solid State Electrochem. 2011, 15, 1263. doi: 10.1007/s10008-010-1195-5
(31) Bard, A. J.; Faulkner, L. R. Electrochemical Methods, 2nd ed.;Wiley: New York, 2001.
(32) Jiao, L. F.; Zhang, M.; Yuan, H. T.; Zhao, M.; Guo, H.;Wang,W.; Zhou, X. D.;Wang, Y. M. J. Power Sources 2007, 167, 178.doi: 10.1016/j.jpowsour.2007.01.070
(33) Ghosh, P.; Mahanty, S.; Basu, R. N. Electrochim. Acta 2009, 54,1654. doi: 10.1016/j.electacta.2008.09.050
(34) Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Nano Lett. 2010,10, 4123. doi: 10.1021/nl1023595
(35) Hwang, B. J.; Santhanam, R.; Chen, C. H. J. Power Sources2003, 114, 244. doi: 10.1016/S0378-7753(02)00584-0
(36) Kyu-Hang, L.; Nam-In, C.; Eui-Jung, Y.; Nam, H. G. Appl. Surf. Sci. 2011, 256, 4241.
(37) Katsumata, T.; Matsui, Y.; Inaguma, Y.; Itoh, M. Solid State Ionics 1996, 86 (8), 165.
(38) Wu, F.;Wang, M.; Su, Y. F.; Bao, L. Y.; Chen, S. Electrochim. Acta 2009, 54, 6803. doi: 10.1016/j.electacta.2009.06.075

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[3] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2261-2267.
[4] LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2293-2300.
[5] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(1): 211-241.
[6] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2287-2292.
[7] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1866-1879.
[8] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[9] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1489-1494.
[10] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1056-1061.
[11] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. Chim. Sin., 2016, 32(3): 717-722.
[12] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. Chim. Sin., 2016, 32(2): 573-580.
[13] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2737-2744.
[14] SUN Xiao-Fei, XU You-Long, ZHENG Xiao-Yu, MENG Xiang-Fei, DING Peng, REN Hang, LI Long. Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1513-1520.
[15] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Phys. Chim. Sin., 2015, 31(8): 1527-1534.