Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (08): 1971-1977    DOI: 10.3866/PKU.WHXB201206111
One-Step Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Ultrafine Cu-Nanodot-Modified TiO2 Nanotubes
ZHAO Peng-Jun1,2, WU Rong1, HOU Juan1,2, CHANG Ai-min1, GUAN Fang1,2, ZHANG Bo1,2
1. Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, P. R. China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(2050KB) Export: BibTeX | EndNote (RIS)      


One dimensional titanate nanotubes modified with copper nanospheres were synthesized through a facile one-step hydrothermal process. Transmission electron microscope (TEM), X-ray diffraction (XRD), and energy dispersive spectrometry (EDS) were used to monitor the changes in the morphology and phases during the hydrothermal process. The diameter of the Cu-TiO2 composite nanotubes was 10-15 nm and their lengths were ca 100 nm, the dimension of the covered Cu nanoparticles was about 5 nm. Brunauer-Emmett-Teller (BET) tests revealed the specific surface area of the Cu-TiO2 composite nanotubes to be 154.67 m2·g-1. The formation process and mechanism of the composite nanotubes were surveyed by adjusting the hydrothermal duration and titanium precursor. The results revealed that an amorphous titanium precursor is essential for the successful formation of this unique topography and phase composition. Anti-Ostwald ripening, a decrease in the dimensions of the copper nanospheres with hydrothermal time, was observed in the TEM images, which is of benefit to helps keep the particles on the nanoscale. The UV-Vis spectrum of the as-prepared material exhibits a strong absorption at 350-800 nm in the visible band compared with commercial TiO2 nanopowders. The plasmonic absorption of metallic copper particles between 550 and 600 nm is seen in the UV-Vis spectrum. Schottky barriers between copper-TiO2 interfaces make this kind of material a potential agent in speeding up electron transport rates and slowing recombination rates. Photocatalytic experiments demonstrated this unique Cu-TiO2 composite nanotube material has a high photocatalytic activity under visible-light irradiation.

Key wordsVisible-light photocatalysis      TiO2      Cu      One step hydrothermal method      Composite nanotube     
Received: 28 March 2012      Published: 11 June 2012
MSC2000:  O643  

The project was supported by the “Western Light Joint Scholar Foundation” Program of Chinese Academy of Sciences (LHXZ200902) and China Postdoctoral Science Foundation (20100471679, 201104704).

Corresponding Authors: CHANG Ai-min     E-mail:
Cite this article:

ZHAO Peng-Jun, WU Rong, HOU Juan, CHANG Ai-min, GUAN Fang, ZHANG Bo. One-Step Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Ultrafine Cu-Nanodot-Modified TiO2 Nanotubes. Acta Phys. Chim. Sin., 2012, 28(08): 1971-1977.

URL:     OR

(1) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E.W.; Yeh, C. Y.; Zakeeruddin, S.M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
(2) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红,熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.] doi: 10.3866/PKU.WHXB20100815
(3) Zhang,W.; Zou, L.;Wang, L. Appl. Catal. A 2009, 371, 1.doi: 10.1016/j.apcata.2009.09.038
(4) Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.;Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X.W. J. Am. Chem. Soc. 2010, 132, 6124. doi: 10.1021/ja100102y
(5) Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L.; Chen, H. M. Adv. Funct. Mater. 2011, 21, 1717. doi: 10.1002/adfm.201002295
(6) Wang, N.; Han, L.; He, H.; Park, N. H.; Koumoto, K. Energy Environ. Sci. 2011, 4, 3676. doi: 10.1039/c1ee01646f
(7) Attar, A. S.; Ghamsari, M. S.; Hajiesmaeilbaigi, F.; Mirdamadi,S.; Katagiri, K.; Koumoto, K. Mater. Chem. Phys. 2009, 113,856. doi: 10.1016/j.matchemphys.2008.08.040
(8) Wang, D.; Yu, B.;Wang, C.; Zhou, F.; Liu,W. Adv. Mater. 2009,21, 1964. doi: 10.1002/adma.200801996
(9) Dai, L.; Sow, C. H.; Lim, C. T.; Cheong,W. C. D.; Tan, V. B. C.Nano Lett. 2009, 9, 576. doi: 10.1021/nl8027284
(10) Lekeufack, D. D.; Brioude, A.; Mouti, A.; Alauzun, J. G.;Stadelmann, P.; Coleman, A.W.; Miele, P. Chem. Commun.2010, 46, 4544. doi: 10.1039/c0cc00935k
(11) Yuan, J.;Wang, Y.; Chen, Y.; Yang,W.; Yao, J.; Cao, Y. Appl. Surf. Sci. 2011, 257, 7335. doi: 10.1016/j.apsusc.2011.03.139
(12) Sathish, M.; Viswanathan, B.; Viswanath, R. P.; Gopinath, C. S.Chem. Mater. 2005, 17, 6349. doi: 10.1021/cm052047v
(13) Liu, G.;Wang, X.; Chen, Z.; Cheng, H. M.; Lu, G. Q. J. Colloid Interface Sci. 2009, 329, 331. doi: 10.1016/j.jcis.2008.09.061
(14) Xu, L.; Tang, C. Q.; Huang, Z. B. Acta Phys. -Chim. Sin. 2010,26, 1401. [徐凌, 唐超群, 黄宗斌. 物理化学学报, 2010,26, 1401.] doi: 10.3866/PKU.WHXB20100526
(15) Gao, X.; Zhu, H.; Pan, G.; Ye, S.; Lan, Y.;Wu, F.; Song, D.J. Phys. Chem. B 2004, 108, 2868. doi: 10.1021/jp036821i
(16) Lei, B. X.; Liao, J. Y.; Zhang, R.;Wang, J.; Su, C. Y.; Kuang, D.B. J. Phys. Chem. C 2010, 114, 15228.
(17) Zhu, K.; Vinzant, T. B.; Neale, N. R.; Frank, A. J. Nano Lett.2007, 7, 3739. doi: 10.1021/nl072145a
(18) Huang, B.; Yang, Y.; Chen, X.; Ye, D. Catal. Commun. 2010, 11,844. doi: 10.1016/j.catcom.2010.03.006
(19) Viana, B. C.; Ferreira, O. P.; Filho, A. G. S.; Rodrigues, C. M.;Moraes, S. G.; Filho, J. M.; Alves, O. L. J. Phys. Chem. C 2009,113, 20234. doi: 10.1021/jp9068043
(20) Chu, S.; Zheng, X.; Kong, F.;Wu, G.; Luo, L.; Guo, Y.; Liu, H.;Wang, Y.; Yu, H.; Zou, Z.; Liu, Z. Mater. Chem. Phys. 2011,129, 1184. doi: 10.1016/j.matchemphys.2011.06.004
(21) Zhao, G., Lei, Y.; Zhang, Y.; Li, H.; Liu, M. J. Phys. Chem. C2008, 112, 14786. doi: 10.1021/jp712054c
(22) Chien, S.; Liou, Y. C.; Kuo, M. C. Synthetic Metals 2005, 152,333. doi: 10.1016/j.synthmet.2005.07.254
(23) Wang, C.; Yin, L.; Zhang, L.; Liu, N.; Lun, N.; Qi, Y. ACS Appl. Mater. Interfaces 2010, 2, 3373. doi: 10.1021/am100834x
(24) Macak, J. M.; Schmidt-Stein, F.; Schmuki, P. Electrochem. Commun. 2007, 9, 1783. doi: 10.1016/j.elecom.2007.04.002
(25) Zeng, H.; Cai,W.; Liu, P.; Xu, X.; Zhou, H.; Klingshirn, C.;Kalt, H. ACS Nano 2008, 2, 1661. doi: 10.1021/nn800353q
(26) Kumar, V.; Adamson, D. H.; Prudhomme, R. K. Small 2010, 6,2907. doi: 10.1002/smll.201001199
(27) Jia,W.; Douglas, E. P. J. Mater. Chem. 2004, 14, 744. doi: 10.1039/b311917c
(28) Nakahira, A.; Kubo, T.; Numako, C. Inorg. Chem. 2010, 49,5845. doi: 10.1021/ic9025816
(29) Huang, J.; Cao, Y.; Huang, Q.; He, H.; Liu, Y.; Guo,W.; Hong,M. Cryst. Growth Des. 2009, 9, 3632. doi: 10.1021/cg900381h
(30) Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang,W. F.; Yang, Z. Y.;Wang, N. Appl. Phys. Lett. 2003, 82, 281. doi: 10.1063/1.1537518
(31) Kochkar, H.; Lakhdhar, N.; Berhault, G.; Bausach, M.; Ghorbel,A. J. Phys. Chem. C 2009, 113, 1672. doi: 10.1021/jp809131z
(32) Xu, S.; Ng, J.; Zhang, X.; Bai, H.; Sun, D. D. Int. J. Hydrog. Energy 2010, 35, 5254. doi: 10.1016/j.ijhydene.2010.02.129
(33) Boccuzzi, F.; Coluccia, S.; Martra, G.; Ravasio, N. J. Catal.1999, 184, 316. doi: 10.1006/jcat.1999.2428
(34) Balogh, L.; Tomalia, D. A. J. Am. Chem. Soc. 1998, 120, 7355.doi: 10.1021/ja980861w
(35) Doremus, R. H.; Rao, P. J. Mater. Res. 1996, 11, 2384.
(36) Pestryakov, A. N.; Petranovskii, V. P.; Kryazho, A.; Ozhereliev,O.; Pfcander, N.; Knop-Gericke, A. Chem. Phys. Lett. 2004,385, 173. doi: 10.1016/j.cplett.2003.12.077

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] JIANG Xiaoyu, WU Wei, MO Yirong. Strength of Intramolecular Hydrogen Bonds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 278-285.
[3] FANG Lei, SUN Mingjun, CAO Xinrui, CAO Zexing. Mechanical and Optical Properties of a Novel Diamond-like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor:a First-Principles Study[J]. Acta Phys. Chim. Sin., 2018, 34(3): 296-302.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[5] LEI Gang, HE Yan. Applications of Single Plasmonic Nanoparticles in Biochemical Analysis and Bioimaging[J]. Acta Phys. Chim. Sin., 2018, 34(1): 11-21.
[6] LIU Fu-Feng, FAN Yu-Bo, LIU Zhen, BAI Shu. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1905-1914.
[7] FU Zhi-Dan, ZANG Jia-Xin, YE Qing, CHENG Shui-Yuan, KANG Tian-Fang. Cu-Doped Octahedral Layered Birnessites Catalysts for the Catalytic Oxidation of CO and Ethyl Acetate[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1855-1864.
[8] WANG Xiu-Xiu, ZHAO Jian-Wei, YU Gang. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1773-1780.
[9] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[10] SONG Chun-Dong, ZHANG Jing, GAO Ying, LU Yuan-Yuan, WANG Fang-Fang. Synthesis Direct Z-Scheme CuS-WO3 Photocatalysts Based on an Element-Reaction Route and Their Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1891-1897.
[11] LOU Zhang-Rong, LI Peng, HAN Ke-Li. Fluorescent Probes for Mitochondrial Reactive Oxygen Species in Biological Systems[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1573-1588.
[12] ZHAO Wen-Rong, HAO Jing-Cheng, Heinz Hoffmann. Vesicle Gels of Magnetic Asymmetric Surfactants[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1655-1664.
[13] WANG Xin-Lei, MA Kui, GUO Li-Hong, DING Tong, CHENG Qing-Peng, TIAN Ye, LI Xin-Gang. Catalytic Performance for Hydrogen Production through Steam Reforming of Dimethyl Ether over Silica Supported Copper Catalysts Synthesized by Ammonia Evaporation Method[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1699-1708.
[14] LIAO Pei-Yi, ZHANG Chen, ZHANG Li-Jun, YANG Yan-Zhang, ZHONG Liang-Shu, GUO Xiao-Ya, WANG Hui, SUN Yu-Han. Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1672-1680.
[15] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.