Please wait a minute...
Acta Phys. Chim. Sin.
Synthesis of Shaped ZSM-5 Zeolites by Dry-Gel Conversion with Seed Gel as Directing Agent
YUE Ming-Bo1,2, YANG Na2, WANG Yi-Meng2
1. Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong Province, P. R. China;
2. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, P. R. China
Download:   PDF(1476KB) Export: BibTeX | EndNote (RIS)      


Shaped binderless ZSM-5 zeolites were prepared via a rapid dry-gel conversion technique from aluminosilicate extrudate. Silica gel and boehmite were well mixed and extruded into cylindrical shaped extrudates with diameter of 2 mm with the aid of silica sol, ZSM-5 zeolite seed gel, and/or tetrapropylammonium hydroxide (TPAOH) solution. The total molar ratio of TPAOH to SiO2 was fixed at 0.025. With same amounts of structure directing agent (TPAOH), the addition of seed gels accelerated the crystallization of the zeolite. The seed gel directing agent composition was 0.35TPAOH:1SiO2:20H2O: 4C2H5OH. The seed gel not only provided crystal nuclei for rapid crystallization but also controlled the size of the ZSM-5 crystals. Especially, the morphology of these extrudates was well maintained in the crystallization process. The crystallization processes of zeolite were characterized by X-ray diffraction (XRD), thermogravimetric (TG) analysis, and Fourier transform infrared (FTIR) spectroscopy. The results showed that the growth of the zeolite was accompanied by the occupation of the zeolite channels by TPAOH. When the TPAOH/SiO2 molar ratio was 0.025, the sample achieved 100% relative crystallinity after 3 h crystallization. The morphology and textural properties were characterized by scanning electron microscopy (SEM) and nitrogen sorption isotherms. The obtained shaped zeolites comprised nanosized crystals (200 nm) and exhibited a hierarchical structure with high mesopore volume (0.28 cm3·g-1). The temperature- programmed desorption of ammonia (NH3-TPD) was used to assess the acidity of these shaped zeolites. The results showed that this shaped zeolite possessed an acidity similar to that of a commercial H-ZSM-5 catalyst.

Key wordsShaped ZSM-5 zeolite      Dry-gel conversion      Hierarchical structure      Seed structure directing gel      Nanoscale zeolite     
Received: 30 March 2012      Published: 14 June 2012
MSC2000:  O643.36  

The project was supported by the National Natural Science Foundation of China (20890124, 21003083) and Doctoral Foundation of Shandong Province, China (BS2009CL031).

Corresponding Authors: WANG Yi-Meng     E-mail:
Cite this article:

YUE Ming-Bo, YANG Na, WANG Yi-Meng. Synthesis of Shaped ZSM-5 Zeolites by Dry-Gel Conversion with Seed Gel as Directing Agent. Acta Phys. Chim. Sin., 2012, 28(09): 2115-2121.

URL:     OR

(1) Holma, M. S.; Taarninga, E.; Egeblada, K.; Christensen, C. H.Catal. Today 2011, 168, 3. doi: 10.1016/j.cattod.2011.01.007
(2) Jones, C.W.; Tsuji, K.; Davis, M. E. Nature 1998, 393, 52. doi: 10.1038/29959
(3) Zhai, S. R.;Wei, L.; Yang, D. J.;Wu, D.; Sun, Y. H. Prog. Chem.2006, 18, 1330. [翟尚儒, 魏莉, 杨东江, 吴东, 孙予罕.化学进展, 2006, 18, 1330.]
(4) Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K. Chem. Rev. 2006,106, 896. doi: 10.1021/cr040204o
(5) Perez-Ramirez, J.; Christensen, C. H.; Egeblad, K.; Groen, J. C.Chem. Soc. Rev. 2008, 37, 2530. doi: 10.1039/b809030k
(6) Egeblad, K.; Christensen, C. H.; Kustova, M. Chem. Mater.2008, 20, 946. doi: 10.1021/cm702224p
(7) Ma, Y. H.; Zhao, H. L.; Tang, S. J.; Hu, J.; Liu, H. L. Acta Phys. -Chim. Sin. 2011, 27, 689. [马燕辉, 赵会玲, 唐圣杰,胡军, 刘洪来. 物理化学学报, 2011, 27, 689.] doi: 10.3866/PKU.WHXB20110335
(8) Choi, M.; Cho, H. S.; Srivastava, R.; Venkatesan, C.; Choi, D.H.; Ryoo, R. Nat. Mater. 2006, 5, 718. doi: 10.1038/nmat1705
(9) Zhang, Z. T.; Han, Y.; Zhu, L.;Wang, R.W.; Yu, Y.; Qiu, S. L.;Zhao, D. Y.; Xiao, F. S. Angew. Chem. Int. Edit. 2001, 40, 1258.doi: 10.1002/1521-3773(20010401)40:7<1258::AIDANIE1258>3.0.CO;2-C
(10) Hu, G.; Ma, D.; Liu, L.; Cheng, M. J.; Bao, X. H. Angew. Chem. Int. Edit. 2004, 43, 3452. doi: 10.1002/anie.200453777
(11) Li,W. C.; Lu, A. H.; Palkovits, R.; Schmidt,W.; Spliethoff, B.;Schuth, F. J. Am. Chem. Soc. 2005, 127, 12595. doi: 10.1021/ja052693v
(12) Yoo,W. C.; Kumar, S.; Penn, R. L.; Tsapatsis, M.; Stein, A.J. Am. Chem. Soc. 2009, 131, 12377. doi: 10.1021/ja904466v
(13) Tong, Y.; Zhao, T.; Li, F.;Wang, Y. Chem. Mater. 2006, 18,4218. doi: 10.1021/cm060035j
(14) Zhao, T.; Xu, X.; Tong, Y.; Lei, Q.; Li, F.; Zhang, L. Catal. Lett.2010, 136, 266. doi: 10.1007/s10562-009-0131-8
(15) Dong, A. G.;Wang, Y. J.; Tang, Y.; Zhang, Y. H.; Ren, N.; Gao,Z. Adv. Mater. 2002, 14, 1506. doi: 10.1002/1521-4095(20021016)14:20<1506::AID-ADMA1506>3.0.CO;2-Z
(16) Lee, Y. J.; Kim, Y.W.; Jun, K.W.; Viswanadham, N.; Bae, J.W.;Park, H. S. Catal. Lett. 2009, 129, 408. doi: 10.1007/s10562-008-9811-z
(17) Saini, V. K.; Pinto, M. L.; Pires, J. Colloids Surf. A 2011, 373,158. doi: 10.1016/j.colsurfa.2010.10.047
(18) Huang, Y.; Dong, D.; Yao, J.; He, L.; Ho, J.; Kong, C.; Hill, A.J.;Wang, H. Chem. Mater. 2010, 22, 5271. doi: 10.1021/cm101408n
(19) Wang, D. J.; Liu, Z. N.; Xie, Z. K. J. Inorg. Mater. 2008, 23 (3),592. [王德举, 刘仲能, 谢在库. 无机材料学报, 2008, 23 (3),592.] doi: 10.3724/SP.J.1077.2008.00592
(20) Tokudome, Y.; Nakanishi, K.; Kosaka, S.; Kariya, A.; Kaji, H.;Hanada, T. Microporous Mesoporous Mat. 2010, 132, 538. doi: 10.1016/j.micromeso.2010.04.005
(21) Möller, K.; Yilmaz, B.; Jacubinas, R. M.; Müller, U.; Bein, T.J. Am. Chem. Soc. 2011, 133, 5284. doi: 10.1021/ja108698s
(22) Shi, J.; Ren, N.; Zhang, Y. H.; Tang, Y. Microporous Mesoporous Mat. 2010, 132, 181. doi: 10.1016/j.micromeso.2010.02.018
(23) Wang, D. J.; Liu, Z. N.;Wang, H.; Xie, Z. K.; Tang, Y.Microporous Mesoporous Mat. 2010, 132, 428. doi: 10.1016/j.micromeso.2010.03.023
(24) Lei, Q.; Zhao, T.; Li, F.;Wang, Y. F.; Hou, L. J. Porous Mater.2008, 15, 643. doi: 10.1007/s10934-007-9144-0
(25) Xu, X.; Zhao, T.; Qi, J.; Guo, Y.; Miao, C.; Li, F.; Liang, M.Mater. Lett. 2010, 64, 1660. doi: 10.1016/j.matlet.2010.04.057
(26) Schmidt, I.; Madsen, C.; Jacobsen, C. J. H. Inorg. Chem. 2000,39, 2279. doi: 10.1021/ic991280q
(27) Ren, N.; Yang, Z. J.; Liu, X. C.; Shi, J.; Zhang, Y. H.; Tang, Y.Microporous Mesoporous Mat. 2010, 131, 103. doi: 10.1016/j.micromeso.2009.12.009
(28) Jacobs, P. A.; Beyer, H. K.; Valyon, J. Zeolites 1981, 1, 161. doi: 10.1016/S0144-2449(81)80006-1
(29) Jansen, J. C.; Vander-Gaag, F. J.; Van-Bekkum, H. Zeolites1984, 4, 369. doi: 10.1016/0144-2449(84)90013-7
(30) Kruk, M.; Jaroniec, M. Chem. Mater. 2001, 13, 3169. doi: 10.1021/cm0101069

[1] ZHANG Wei, SU Yu, LIU Fang-Hui, YANG Hui, WANG Jin-Ben. Study of Interactions between 3,4-Dihydroxyphenylalanine and Surfaces with Nano-, Micro- and Hierarchical Structures Using Colloidal Probe Technology[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1644-1654.
[2] JIAO Shu-Hong, XU Dong-Sheng, XU Li-Fen, ZHANG Xiao-Guang. Recent Progress in Electrochemical Synthesis and Morphological Control of Metal Oxide Nanostructures[J]. Acta Phys. Chim. Sin., 2012, 28(10): 2436-2446.
[3] LIU Tian-Qing, SUN Wei, SUN Xiang-Yu, AI Hong-Ru. Effect of Hierarchical Architecture of Super-Hydrophobic Surface on the Condensed Drop's Final State[J]. Acta Phys. Chim. Sin., 2010, 26(11): 2989-2996.
[4] SHAO Shao-Feng, ZHANG Gui-Jun, ZHOU Hui-Jing, GUAN Nai-Jia, CHEN Tie-Hong. Hierarchically Nano-structured In2S3 Hollow Microspheres Synthesized Using Amino Acids as Crystal Growth Modifiers[J]. Acta Phys. Chim. Sin., 2009, 25(03): 411-416.