Please wait a minute...
Acta Phys. -Chim. Sin.  2012, Vol. 28 Issue (09): 2221-2230    DOI: 10.3866/PKU.WHXB201206151
Preparation of Magnetic Targeted Fe3O4-TiO2Nanoparticles and Their Photocatalytic Killing Effect on Hepatoma Carcinoma Cells
WEN Wen, GAO Xiao-Ya, SONG Zhi-Ying, HAN Dong, WANG Juan, ZHU Mei-Xia, ZHANG Ai-Ping
College of Pharmacy, Shanxi Medical University, Taiyuan 030001, P. R. China
Download:   PDF(1310KB) Export: BibTeX | EndNote (RIS)      


Fe3O4-TiO2 nanoparticles with different doped amounts of Fe3O4 were prepared by three sol-gel methods at low temperature. They were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, fluorescence spectroscopy (FS), and magnetic performance. The nanoparticles which had uniform coating, good dispersion, excellent magnetism, and high photocatalytic activity were screened. The survival rates of hepatoma carcinoma cells (HepG2) were measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) cell proliferation assay, and the photo-killing effect of screened Fe3O4-TiO2 nanoparticles on HepG2 cells was investigated in different external magnetic fields. The results indicated that the core-shell structure 5% (mass fraction) Fe3O4-TiO2 nanoparticles prepared by the third method displayed good dispersion in suspension, high photocatalytic activity, and excellent magnetic responsivity. The average particle size of the 5%Fe3O4-TiO2 particles was 50 nm. Meanwhile, the photoresponsive range of TiO2 was extended to 444 nm. In the external magnetic fields, the Fe3O4-TiO2 nanoparticles excited either by ultraviolet or visible light showed no obvious difference on killing effect, while in both cases had a higher killing effect than that of nano-TiO2. Furthermore, the killing effect was enhanced with the increased magnetic field strength in the range of 0-1.0 T.

Key wordsMagnetic targeting      Fe3O4-TiO2 nanoparticles      HepG2 cell      Photocatalysis      Killing effect     
Received: 17 April 2012      Published: 15 June 2012
MSC2000:  O649  

The project was supported by the Natural Science Foundation of Shanxi Province, China (2010011048-1), Science and Technology Development Plan of Taiyuan for University Students’ Innovative and Pioneering Project in 2012, China (120164073), and Innovation Foundation of Shanxi Medical University for College Students in 2011, China.

Corresponding Authors: ZHANG Ai-Ping     E-mail:
Cite this article:

WEN Wen, GAO Xiao-Ya, SONG Zhi-Ying, HAN Dong, WANG Juan, ZHU Mei-Xia, ZHANG Ai-Ping. Preparation of Magnetic Targeted Fe3O4-TiO2Nanoparticles and Their Photocatalytic Killing Effect on Hepatoma Carcinoma Cells. Acta Phys. -Chim. Sin., 2012, 28(09): 2221-2230.

URL:     OR

(1) Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1. doi: 10.1016/S1389-5567(00)00002-2
(2) Dodd, N. J. F.; Jha, A. N. Mutation Res. 2009, 660, 79. doi: 10.1016/j.mrfmmm.2008.10.007
(3) Wang, J.; Guo, Y.W.; Liu, B.; Jin, X. D.; Liu, L. J.; Xu, R.;Kong, Y. M.;Wang, B. X. Ultrason. Sonochem. 2011, 18, 1028.doi: 10.1016/j.ultsonch.2010.12.006
(4) Huang, N. P.; Xu, M. H.; Yuan, C.W.; Yu, R. R. J. Photochem. Photobiol. A: Chem. 1997, 108, 229. doi: 10.1016/S1010-6030(97)00093-2
(5) Zhang, A. P.; Sun, Y. P. World J. Gastroenterol. 2004, 10, 3191.
(6) Zhu, R. R.;Wang, S. L.; Chao, J.; Shi, D. L.; Zhang, R.; Sun, X.Y.; Yao, S. D. Mater. Sci. Eng. C 2009, 29, 691. doi: 10.1016/j.msec.2008.12.023
(7) Lagopati, N.; Kitsiou, P. V.; Kontos, A. I.; Venieratos, P.;Kotsopoulou, E.; Kontos, A. G.; Dionysiou, D. D.; Pispas, S.;Tsilibary, E. C.; Falaras, P. J. Photochem. Photobiol. A: Chem.2010, 214, 215. doi: 10.1016/j.jphotochem.2010.06.031
(8) Sun, Y.; Xu, J.; Cai,W. B.; Jiang, Z. Y. Acta Phys. -Chim. Sin.2008, 24, 1359. [孙毅, 许娟, 蔡文斌, 江志裕. 物理化学学报, 2008, 24, 1359.] doi: 10.3866/PKU.WHXB20080806
(9) Janczyk, A.; Glubisz, A.W.; Urbanska, K.; Kisch, H.; Stochel,G.; Macyk,W. Free Radical Biol. Med. 2008, 44, 1120. doi: 10.1016/j.freeradbiomed.2007.12.019
(10) Liu, L.; Miao, P.; Xu, Y. Y.; Tian, Z. P.; Zou, Z. G.; Li, G. X.J. Photochem. Photobiol. B: Biol. 2010, 98, 207. doi: 10.1016/j.jphotobiol.2010.01.005
(11) Alexiou, C.; Arnold,W.; Klein, R. J.; Parak, F. G.; Hulin, P.;Bergemann, C.; Erhardt,W.;Wagenpfeil, S.; Lübbe, A. S.Cancer Res. 2000, 60, 6641.
(12) Zhang, Y.; Kohler, N.; Zhang, M. Biomaterials 2002, 23, 1553.doi: 10.1016/S0142-9612(01)00267-8
(13) Lübbe, A. S.; Alexiou, C.; Bergemann, C. J. Surg. Res. 2001,95, 200. doi: 10.1006/jsre.2000.6030
(14) Alexiou, C.; Schmid, R. J.; Jurgons, R.; Kremer, M.;Wanner,G.; Bergemann, C.; Huenges, E.; Nawroth, T.; Arnold,W.;Parak, F. G. Eur. Biophys. J. 2006, 35, 446. doi: 10.1007/s00249-006-0042-1
(15) Alvarez, P. M.; Jaramillo, J.; Lopez-Pinero, F.; Plucinski, P. K.Appl. Catal. B: Environ. 2010, 100, 338. doi: 10.1016/j.apcatb.2010.08.010
(16) Chen,W. J.; Tsai, P. J.; Chen, Y. C. Small 2008, 4, 485. doi: 10.1002/smll.200701164
(17) He, Q. H.; Zhang, Z. X.; Xiong, J.W.; Xiong, Y. Y.; Xiao, H.Opt. Mater. 2008, 31, 380. doi: 10.1016/j.optmat.2008.05.011
(18) Shrestha, N. K.; Macak, M. J.; Felix, S. S.; Hahn, R.; Mierke, C.T.; Fabry, B.; Schmuki, P. Angew. Chem. 2008, 120, 1. doi: 10.1002/ange.200790254
(19) Jolivet, J. P.; Chanéac, C.; Tronc, E. Chem. Commun. 2004, 477.
(20) Bickley, R. I.; González, C. T.; Palmisano, L.; Tilley, R. J. D.;Williams, J. M. Mater. Chem. Phys. 1997, 51, 47. doi: 10.1016/S0254-0584(97)80265-9
(21) Ao, Y. H.; Xu, J. J.; Fu, D. G.; Shen, X.W.; Yuan, C.W. Sep. Purif. Technol. 2008, 61, 436. doi: 10.1016/j.seppur.2007.12.007
(22) Li, X. Y.;Wang, J. Y.;Wang, X. Y.; Su, D.; Han, X. J.; Du, Y. C.Chem. J. Chin. Univ. 2010, 31, 662. [李秀莹, 王靖宇, 王晓宇, 苏丹, 韩喜江, 杜耘辰. 高等学校化学学报, 2010, 31,662.]
(23) Khanna, P. K.; Singh, N.; Charan, S. Mater. Lett. 2007, 61, 4725.
(24) Hu, M. L.; Bai, C. G.; Xu, S. M.; Xu, G.; Liang, D. Acta Phys. -Chim. Sin. 2008, 24, 2287. [扈玫珑, 白晨光, 徐盛明,徐刚, 梁栋. 物理化学学报, 2008, 24, 2287.] doi: 10.3866/PKU.WHXB20081223
(25) Chen, Q. C.; Deng, H. Y.; Ma, Y. M. Journal of China Surfactant Detergent & Cosmetics 2002, 32, 35. [陈庆春,邓慧宇, 马燕明. 日用化学工业, 2002, 32, 35.]
(26) Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Conesa, J. C.;Yeung, K. L.; Augugliaro, V.; Soria, J. Langmuir 2001, 17, 5368.doi: 10.1021/la010153f
(27) Li, M. L.; Xu, M. X.; Pang, X. M.; Fang, H. B. J. Chin. Ceram. Soc. 2006, 34, 1147. [李明利, 徐明霞, 庞学满, 方海波. 硅酸盐学报, 2006, 34, 1147.]
(28) Li, H. P.;Wang, M. D.; Zou, G. R. J. Mol. Catal. 2008, 22,555. [李和平, 王庙东, 邹贵荣. 分子催化, 2008, 22, 555.]
(29) Townley, H. E.; Rapa, E.;Wakefield, G.; Dobson, P. J.Nanomed.: Nanotechnol. Biol. Med. 2011, 8, 526.

[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[2] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[3] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[4] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[5] Hao ZHANG,Xin-Gang LI,Jin-Meng CAI,Ya-Ting WANG,Mo-Qing WU,Tong DING,Ming MENG,Ye TIAN. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[6] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[7] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[8] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[9] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[10] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[11] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.
[12] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1519-1526.
[13] Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 728-736.
[14] Li-Fang HU,Jie HE,Yuan LIU,Yun-Lei ZHAO,Kai CHEN. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 737-744.
[15] Jian-Dong ZHUANG,Qin-Fen TIAN,Ping LIU. Bi2Sn2o7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 551-557.