Please wait a minute...
Acta Phys. Chim. Sin.
CATALYSIS AND SURFACE SCIENCE     
Heterogeneously Catalyzed One-Pot Synthesis of N-alkyl anilines from Nitroaromatics by Assembled Pt3Sn/Al2O3 Catalyst
YANG Fang, XU Xiang-Sheng, GU Hui-Zi, CHEN Ao-Ang, YAN Xin-Huan
State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
Download:   PDF(626KB) Export: BibTeX | EndNote (RIS)      

Abstract  

N-alkyl anilines were obtained from nitroaromatics by a one-pot method using assembled Pt3Sn/Al2O3 catalyst for heterogeneous in situ hydrogenation in a continuous-flow fixed-bed reactor. At the optimum reaction conditions (503 K, liquid hourly space velocity (LHSV) of 7.5 h-1, 5% (volume fraction) water, 1% (mass fraction) Pt3Sn/Al2O3 catalyst), nitrobenzene conversion was 100%, with a total N-ethyl and N,N-diethyl aniline yield of 98.2%. Moreover, the Pt3Sn/Al2O3 catalyst had a great conjoint effect for all in situ hydrogenation reactions for N-alkylation. High yields of N-alkylation products were obtained in aliphatic alcohol/water systems for 14 selected nitroaromatics.



Key wordsN-alkylation      In situ liquid hydrogenation      Nitroaromatic      N-alkyl aniline      Pt-Sn bimetallic catalyst     
Received: 06 April 2012      Published: 20 June 2012
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21076197), Natural Science Foundation of Zhejiang Province, China (Y4090440), and Qianjiang Talent Program of Zhejiang Province, China (2010R10038).

Cite this article:

YANG Fang, XU Xiang-Sheng, GU Hui-Zi, CHEN Ao-Ang, YAN Xin-Huan. Heterogeneously Catalyzed One-Pot Synthesis of N-alkyl anilines from Nitroaromatics by Assembled Pt3Sn/Al2O3 Catalyst. Acta Phys. Chim. Sin., 2012, 28(09): 2141-2147.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201206201     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I09/2141

(1) Xia, J. H.; Zhang, X.; Matyjaszewski, K. ACS Symp. Ser. 2000,760, 207. doi: 10.1021/bk-2000-0760.ch013
(2) Clardy, J. M.; Fischbach, A.;Walsh, C. T. Nat. Biotechnol.2006, 24, 1541. doi: 10.1038/nbt1266
(3) Oku, T.; Arita, Y.; Tsuneki, H.; Ikariya, T. J. Am. Chem. Soc.2004, 126, 7368. doi: 10.1021/ja048557s
(4) Salvatore, R. N.; Nagle, A. S.; Jung, K.W. J. Org. Chem. 2002,67, 674. doi: 10.1021/jo010643c
(5) Basu, B.; Paul, S.; Nanda, A. K. Green Chem. 2009, 11, 1115.doi: 10.1039/b905878h
(6) Tripathi, R. P.; Verma, S. S.; Pandey, J.; Tiwari, V. K. Curr. Org. Chem. 2008, 10, 1093.
(7) Byun, E.; Hong, B.; De Castro, K. A.; Lim, M.; Rhee, H. J. Org. Chem. 2007, 72, 9815. doi: 10.1021/jo701503q
(8) Abdel-Magid, A. F.; Mehrman, S. J. Org. Process Res. Dev.2006, 10, 971. doi: 10.1021/op0601013
(9) Shimizu, K.; Shimura, K.; Ohshima, K.; Tamura, M.; Satsuma,A. Green Chem. 2011, 13, 3096. doi: 10.1039/c1gc15835j
(10) Xu, C.; Xiao, Z.; Zhou, B.;Wang, Y.; Huang, P. Chem. Commun. 2010, 46, 7834. doi: 10.1039/c0cc01487g
(11) Yamaguchi, K.; He, J.; Oishi, T.; Mizuno, N. Chem. Eur. J.2010, 16, 7199.
(12) Hamid, M. H. S.; Allen, A. C. L.; Lamb, G.W.; Maxwell, A. C.;Maytum, H. C.;Waston, A. J. A.;Williams, J. M. J. J. Am. Chem. Soc. 2009, 131, 1766. doi: 10.1021/ja807323a
(13) He, L.; Lou, X.; Ni, J.; Liu, Y.; Cao, Y.; He, H.; Fan, K. Chem. Eur. J. 2010, 16, 13965. doi: 10.1002/chem.201001848
(14) Kawahara, R.; Fujita, K.; Yamaguchi, R. Adv. Synth. Catal.2011, 353, 1161. doi: 10.1002/adsc.201000962
(15) Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.;Williams, J. M. J. Chem. Commun. 2010, 46, 1541. doi: 10.1039/b923083a
(16) Ruano, J. L. G.; Parra, A.; Aleman, J.; Yuste, F.; Mastranzo, V.M. Chem. Commun. 2009, 404.
(17) Zhu, A.; Li, L.;Wang, J.; Zhuo, K. Green Chem. 2011, 13, 1244.doi: 10.1039/c0gc00763c
(18) Enthaler, S. Catal. Lett. 2011, 141, 55. doi: 10.1007/s10562-010-0463-4
(19) Peng, Q.; Zhang, Y.; Shi, F.; Deng, Y. Q. Chem. Commun. 2011,47, 6476. doi: 10.1039/c1cc11057h
(20) Pandarus, V.; Ciriminna, R.; Beland, F.; Pagliaro, M. Catal. Sci. Technol. 2011, 1, 1616. doi: 10.1039/c1cy00097g
(21) Lee, C. C.; Liu, S. T. Chem. Commun. 2011, 47, 6981. doi: 10.1039/c1cc11609f
(22) Xiang, Y. Z.; Li, X. N.; Lu, C.; Ma, L.; Zhang, Q. Alpplied Catal. A: Gen. 2010, 375, 289. doi: 10.1016/j.apcata.2010.01.004
(23) Feng, C.; Liu, Y.; Peng, S.; Shuai, Q.; Deng, G.; Li, C. Org. Lett.2010, 12, 4888. doi: 10.1021/ol1020527
(24) Bea, J.W.; Cho, Y. J.; Lee, S. H.; Yoon, C. M.; Yoon, C. M.Chem. Commun. 2000, 1857.
(25) Reddy, R. C.; Vijeender, K., Bhusan, B. P.; Madhavi, P. P.;Chandrasekhar, S. Tetrahedron Lett. 2007, 48, 2765. doi: 10.1016/j.tetlet.2007.02.050
(26) Ely, T. O.; Pan, C.; Amiens, C.; Chaudret, B.; Dassenoy, F.;Lecante, P.; Casanove, M. J.; Mosset, A.; Respaud, M.; Broto, J.M. J. Phys. Chem. B 2000, 104, 695. doi: 10.1021/jp9924427
(27) Mao, J. Z.; Yan, X. H.; Gu, H. Z.; Jiang, L. C. Chin. J. Catal.2009, 30, 182. [毛建忠, 严新焕, 顾辉子, 江玲超. 催化学报,2009, 30, 182.] doi: 10.1016/S1872-2067(08)60095-9
(28) Zhou, L.; Gu, H. Z.; Yan, X. H. Catal. Lett. 2009, 132, 16. doi: 10.1007/s10562-009-0036-6
(29) Riguetto, B. A.; Damyanova, S.; Goluliev, G.; Marques, C. M.P.; Petrov, L.; Bueno, J. M. C. J. Phys. Chem. B 2004, 108, 5349.
(30) Navarro, R. M.; Álvarez-Galván, M. C.; Sánchez-Sánchez, M.C.; Rosa, F.; Fierro, J. L. G. Appl. Catal. B: Environ. 2005, 55,229. doi: 10.1016/j.apcatb.2004.09.002
(31) Merlen, E.; Beccat, P.; Bertolini, J. C.; Delichère, P.; Zanier, N.;Didillon, B. J. Catal. 1996, 159, 178. doi: 10.1006/jcat.1996.0077
(32) Dupont, C.; Delbecq, F.; Loffreda, D.; Jugnet, Y. J. Catal. 2011,278, 239. doi: 10.1016/j.jcat.2010.12.012
(33) Narayanan, S.; Deshpande, K. Appl. Catal. A 1996, 135, 125.doi: 10.1016/0926-860X(95)00220-0

[1] TU Xiao-Hua, CHU You-Qun, MA Chun-An. Electrochemical Behavior of Nitroaromatics on Pt Microelectrode in an Aprotic Medium[J]. Acta Phys. Chim. Sin., 2011, 27(09): 2148-2152.