Please wait a minute...
Acta Phys. Chim. Sin.
CATALYSIS AND SURFACE SCIENCE     
Size Effect of HZSM-5 Zeolite on Catalytic Conversion of Methanol to Propylene
YAO Min1,2, HU Si3, WANG Jian2, DOU Tao3, WU Yong-Ping1
1. School of Energy Engineering, Xi?an University of Science and Technology, Xi?an 710054, P. R. China;
2. Shen Hua Ningxia Coal Industry Group Co., Ltd., Yinchuan 750011, P. R. China;
3. The Key Laboratory of Catalysis, China National Petroleum Corporation, China University of Petroleum, Beijing 102249, P. R. China
Download:   PDF(850KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Catalytic conversion of methanol to propylene (MTP) by HZSM-5 zeolite is of great importance in industrial applications. In this paper, a series of HZSM-5 zeolites with different crystal sizes were synthesized by adjusting the initial gel composition, crystallization temperature, and crystallization time. The crystal structure, size, morphology, pore structure, and acidity of HZSM-5 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption, and temperature-programmed desorption of ammonia (NH3-TPD). The catalytic activity and stability of HZSM-5 with different crystal sizes for MTP were evaluated on a continuous flowing fixed-bed reactor. Coke deposited on HZSM-5 was analyzed by thermogravimetric (TG) analyzer. Results indicated that with smaller crystal size, HZSM-5 zeolite had larger surface area and pore volume, higher density of pore openings, and shorter path length of micropore channels that prevent side reactions. For MTP reaction, smaller crystal sizes of HZSM-5 showed a higher resistance and better tolerance to coke, and longer catalytic lifetime. The lowering of both the total and strong acidity on HZSM-5 with smaller crystal size favored a higher selectivity of target product, propylene.



Key wordsHZSM-5 zeolite      Crystal size      Methanol      Propylene      Acid property      Coke deposition     
Received: 20 April 2012      Published: 21 June 2012
MSC2000:  O643  
Fund:  

The project was supported by the National Key Technologies R & D Program of China (2007BAA08B05).

Corresponding Authors: WU Yong-Ping     E-mail: wuyp@xust.edu.cn
Cite this article:

YAO Min, HU Si, WANG Jian, DOU Tao, WU Yong-Ping. Size Effect of HZSM-5 Zeolite on Catalytic Conversion of Methanol to Propylene. Acta Phys. Chim. Sin., 2012, 28(09): 2122-2128.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201206211     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I09/2122

(1) Zhu, J.; Cui, Y.; Nawaz, Z.;Wang, Y.;Wei, F. Chin. J. Chem. Eng. 2010, 18, 979. doi: 10.1016/S1004-9541(09)60156-7
(2) Hao, Z. X.; Zhao, H. T.;Wang, L. J.; Xie, L. L.; Tian, Z.; Li, Q.H. Acta Phys. -Chim. Sin. 2009, 25, 829. [郝志显, 赵海涛,王利军, 解丽丽, 田震, 李庆华. 物理化学学报, 2009, 25,829.] doi: 10.3866/PKU.WHXB20090513
(3) Dubois, D. R.; Obrzut, D. L.; Liu, J.; Thundimadathil, J.;Adekkanattu, P. M.; Guin, J. A.; Punnoose, A.; Seehra, M. S.Fuel Process. Technol. 2003, 83, 203. doi: 10.1016/S0378-3820(03)00069-9
(4) Lee, Y. J.; Baek, S. C.; Jun, K.W. Appl. Catal. A: Gen. 2007,329, 130. doi: 10.1016/j.apcata.2007.06.034
(5) Yuan, C. Y.;Wei, Y. X.; Li, J. Z.; Xu, S. T.; Chen, J. R.; Zhou,Y.;Wang, Q. Y.; Xu, L.; Liu, Z. M. Chin. J. Catal. 2012, 33,367. [袁翠峪, 魏迎旭, 李金哲, 徐舒涛, 陈景润, 周游,王全义, 许磊, 刘中民. 催化学报, 2012, 33, 367.]
(6) Lee, Y. J.; Kim, Y.W.; Viswanadham, N.; Jun, K.W.; Bae, J.W.Appl. Catal. A: Gen. 2010, 374, 18. doi: 10.1016/j.apcata.2009.11.019
(7) Mao, D. S.; Guo, Q. S.; Meng, T. Acta Phys. -Chim. Sin. 2010,26, 2242. [毛东森, 郭强胜, 孟涛. 物理化学学报, 2010,26, 2242.] doi: 10.3866/PKU.WHXB20100814
(8) Mao, D. S.; Guo, Q. S.; Meng, T.; Lu, G. Z. Acta Phys. -Chim. Sin. 2010, 26, 338. [毛东森, 郭强胜, 孟涛, 卢冠忠. 物理化学学报, 2010, 26, 338.] doi: 10.3866/PKU.WHXB20100208
(9) Lu, J. Y.; Zhao, Z.; Xu, C. M.; Duan, A. J.; Zhang, P. Catal. Lett.2006, 109, 65. doi: 10.1007/s10562-006-0058-2
(10) Firoozi, M.; Baghalha, M.; Asadi, M. Catal. Commun. 2009, 10,1582. doi: 10.1016/j.catcom.2009.04.021
(11) Zhao, T. S.; Takemoto, T.; Yoneyama, Y.; Tsubaki, N. Chem. Lett. 2005, 34, 970. doi: 10.1246/cl.2005.970
(12) Zeng, Z. H. Shape-Selective Catalysis; China PetrochemicalPress: Beijing, 1994; pp 91-98. [曾昭槐. 择形催化. 北京:中国石化出版社, 1994: 91-98.]
(13) Wang, Y.; Zhao, B. Y.; Xie, Y. C. Acta Phys. -Chim. Sin. 2001,17, 966. [王钰, 赵碧英, 谢有畅. 物理化学学报, 2001, 17,966.] doi: 10.3866/PKU.WHXB20011102
(14) Damodaran, K.;Wiench, J.W.; Cabral de Menezes, S. M.; Lam,Y. L.; Trebosc, J.; Amoureux, J. P.; Pruski, M. Microporous Mesoporous Mat. 2006, 95, 296. doi: 10.1016/j.micromeso.2006.05.034
(15) Kaarsholm, M.; Joensen, F.; Nerlov, J.; Cenni, R.; Chaouki, J.;Patience, G. S. Chem. Eng. Sci. 2007, 62, 5527. doi: 10.1016/j.ces.2006.12.076
(16) Yang, Y.; Sun, C.; Du, J.; Yue, Y.; Hua,W.; Zhang, C.; Shen,W.;Xu, H. Catal. Commun. 2012, 24, 44. doi: 10.1016/j.catcom.2012.03.013
(17) Li, J.; Xiong, G.; Feng, Z.; Liu, Z.; Xin, Q.; Li, C. Microporous Mesoporous Mat. 2000, 39, 275. doi: 10.1016/S1387-1811(00)00204-3
(18) Wei, R.; Li, C.; Yang, C.; Shan, H. J. Nat. Gas Chem. 2011, 20,261. doi: 10.1016/S1003-9953(10)60198-3
(19) Reddy, J. K.; Motokura, K.; Koyama, T.; Miyaji, A.; Baba, T.J. Catal. 2012, 289, 53. doi: 10.1016/j.jcat.2012.01.014
(20) Kim, S. H.; Komarneni, S.; Heo, N. H. Microporous Mesoporous Mat. 2011, 143, 243. doi: 10.1016/j.micromeso.2011.02.010
(21) Gao, Z.; He, M. Y.; Dai, Y. Y. Zeolite Catalysis and Separation Technology; China Petrochemical Press: Beijing, 1999; pp45-56. [高滋, 何鸣元, 戴逸云. 沸石催化与分离技术.北京: 中国石化出版社, 1999: 45-56.]
(22) Mei, C. S.;Wen, P. Y.; Liu, Z. C.; Liu, H. X.;Wang, Y. D.; Yang,W. M.; Xie, Z. C.; Hua,W. M.; Gao, Z. J. Catal. 2008, 258,243. doi: 10.1016/j.jcat.2008.06.019
(23) Wen, P. Y.; Mei, C. S.; Liu, H. X.; Yang,W. M.; Chen, Q. L.Chem. React. Eng. Technol. 2007, 23, 386. [温鹏宇, 梅长松,刘红星, 杨为民, 陈庆龄. 化学反应工程与工艺, 2007, 23,386.]

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 247-255.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[4] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[5] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[6] YUAN Ping, WANG Hao, XUE Yan-Feng, LI Yan-Chun, WANG Kai, DONG Mei, FAN Wei-Bin, QIN Zhang-Feng, WANG Jian-Guo. Catalytic Properties of Different Crystal Sizes for ZSM-5 Zeolites on the Alkylation of Benzene with Methanol and Optimization of the Reaction Conditions[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1775-1784.
[7] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1785-1794.
[8] TIAN Chun-Xia, YANG Jun-Shuai, LI Li, ZHANG Xiao-Hua, CHEN Jin-Hua. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1473-1481.
[9] ZHAO Jun-Feng, SUN Xiao-Li, HUANG Xu-Ri, LI Ji-Lai. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1175-1182.
[10] LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. Chim. Sin., 2016, 32(4): 950-960.
[11] CHENG Xiao-Meng, LI Yu, CHEN Zong, LI Hong-Ping, ZHENG Xiao-Fang. A Comparative Study on theNMR Relaxation of Methanol in Sub-and Super-Critical Mixtures of CO2 and Methanol[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2671-2677.
[12] HUANG Wei-Xin, QIAN Kun, WU Zong-Fang, CHEN Shi-Long. Structure-Sensitivity of Au Catalysis[J]. Acta Phys. Chim. Sin., 2016, 32(1): 48-60.
[13] HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1374-1382.
[14] ZHAO Jun-Feng, SUN Xiao-Li, LI Ji-Lai, HUANG Xu-Ri. Theoretical Study of Methanol C―H and O―H Bond Activation by PtRu Clusters[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1077-1085.
[15] LI Li, HE Xiao-Li, QIN Tao, DAI Fu-Tao, ZHANG Xiao-Hua, CHEN Jin-Hua. Dual-Sacrificial Template Synthesis of One-Dimensional Tubular Pt-Mn3O4-C Composite with Excellent Electrocatalytic Performance for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2015, 31(5): 927-932.