Please wait a minute...
Acta Phys. Chim. Sin.
CATALYSIS AND SURFACE SCIENCE     
Oxidative Dehydrogenation of Propane to Propylene over Mesoporous Alumina Supported Ni-Co Oxide Catalysts
SUN Yi-Fei, LI Guang-Chao, PAN Xin-Di, HUANG Chuan-Jing, WENG Wei-Zheng, WAN Hui-Lin
State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download:   PDF(871KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A series of mesoporous alumina supported nickel oxide, cobalt oxide, and bimetallic nickelcobalt oxide catalysts were synthesized by a one-pot method, using nonionic triblock copolymer as a template and aluminum isopropoxide as the source of aluminum. For comparison, an additional supported Ni-Co oxide catalyst was prepared by impregnation, using mesoporous alumina as the support. The catalysts were tested for the oxidative dehydrogenation of propane, and their structure and properties were characterized by N2 adsorption-desorption, high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), temperature-programmed H2 reduction (H2-TPR), and laser Raman spectroscopy (LRS). All samples synthesized by the one-pot method had large surface area, highly ordered mesoporous structure, and highly dispersed supported oxide species. However, in the sample prepared by impregnation, the mesostructure of the carrier was destroyed with the formation of Co3O4 phase. Among the catalysts studied, the mesoporous alumina supported Ni-Co oxide catalyst from one-pot synthesis showed the best catalytic performance for propane oxidation to propylene. On this catalyst a 10.3% propylene yield was obtained at 450 ° C, C3H8:O2:N2 molar ratio of 1:1:4, and gas hourly space velocity (GHSV) of 10000 mL·h-1·g-1. This result was much higher than the yield of 2.4% obtained from the catalyst prepared by impregnation. Combining the results of characterization and catalytic reaction, the relationship between structure and performance of the catalysts was discussed. The large difference observed in catalytic performance between catalysts prepared by one-pot and impregnation methods was attributed to their different structures, including textural structure, and dispersion of the supported metal oxide species.



Key wordsPropane      Propylene      Oxidative dehydrogenation      Ni-Co oxide catalyst      Mesoporous alumina      One-pot method     
Received: 18 April 2012      Published: 27 June 2012
MSC2000:  O643  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2010CB732303), National Natural Science Foundation of China (21173173, 21073148, 21033006), Program for Innovative Research Team of the Ministry of Education of China (IRT1036), National Foundation for Fostering Talents of Basic Science, China (J1030415), and Key Scientific Project of Fujian Province, China (2009HZ0002-1).

Corresponding Authors: HUANG Chuan-Jing, WAN Hui-Lin     E-mail: huangcj@xmu.edu.cn; hlwan@xmu.edu.cn
Cite this article:

SUN Yi-Fei, LI Guang-Chao, PAN Xin-Di, HUANG Chuan-Jing, WENG Wei-Zheng, WAN Hui-Lin. Oxidative Dehydrogenation of Propane to Propylene over Mesoporous Alumina Supported Ni-Co Oxide Catalysts. Acta Phys. Chim. Sin., 2012, 28(09): 2135-2140.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201206271     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I09/2135

(1) Taylor, M. N.; Carley, A. F.; Davies, T. E.; Taylor, S. H. Top. Catal. 2009, 52, 1660. doi: 10.1007/s11244-009-9307-0
(2) Liu, Y. M.; Feng,W. L.; Li, T. C.; He, H. Y.; Dai,W. L.; Huang,W.; Cao, Y.; Fan, K. N. J. Catal. 2006, 239, 125. doi: 10.1016/j.jcat.2005.12.028
(3) Ying, F.; Li, J. H.; Huang, C. J.;Weng,W. Z.;Wan, H. L. Catal. Lett. 2007, 115, 137. doi: 10.1007/s10562-007-9079-8
(4) Abello, M. C.; Gomeza, M. F.; Ferretti, O. Appl. Catal. A: Gen.2001, 207, 421. doi: 10.1016/S0926-860X(00)00680-3
(5) Chen, K.; Xie, S.; Bell, A. T.; Iglesia, E. J. Catal. 2001, 198,232. doi: 10.1006/jcat.2000.3125
(6) Watson, R. B.; Ozkan, U. S. J. Catal. 2000, 191, 12. doi: 10.1006/jcat.1999.2781
(7) Li, J. H.;Wang, C. C.; Huang, C. J.; Sun, Y. F.;Weng,W. Z.;Wan, H. L. Appl. Catal. A: Gen. 2010, 382, 99. doi: 10.1016/j.apcata.2010.04.034
(8) Davies, T. E.; Garcia, T.; Solsona, B.; Taylor, S. H. Chem. Commun. 2006, 3417.
(9) Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson,G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.doi: 10.1126/science.279.5350.548
(10) Niesz, K.; Yang, P.; Somorjai, G. A. Chem. Commun. 2005,1986.
(11) Yuan, Q.; Yin, A. X.; Luo, C.; Sun, L. D.; Zhang, Y.W.; Duan,W. T.; Liu, H. C.; Yan, C. H. J. Am. Chem. Soc. 2008, 130, 3465.doi: 10.1021/ja0764308
(12) Stacy, M. M.; Pasquale, F. F.; Mietek, J. J. Am. Chem. Soc.2008, 130, 15210. doi: 10.1021/ja806429q
(13) Shen,W. H.; Komatsubara, K.; Hagiyama, T.; Yoshida, A.;Naito, S. Chem. Commun. 2009, 6490.
(14) Wang, H. Y.; Ruckenstein, E. Catal. Lett. 2001, 75, 13. doi: 10.1023/A:1016719703118
(15) Kobayashi, Y.; Horiguchi, J.; Kobayashi, S.; Yamazaki, Y.;Omata, K.; Nagao, D.; Konno, M.; Yamada, M. Appl. Catal. A: Gen. 2011, 395, 129. doi: 10.1016/j.apcata.2011.01.034
(16) Arnoldy, P.; Moulijin, J. A. J. Catal. 1985, 93, 38. doi: 10.1016/0021-9517(85)90149-6
(17) Jacobs, G.; Ji, Y.; Davis, B. H.; Cronauer, D.; Kropf, A. J.;Marshall, C. L. Appl. Catal. A: Gen. 2007, 333, 177. doi: 10.1016/j.apcata.2007.07.027
(18) Xiao, T. C.; Ji, S. F.;Wang, H. T.; Coleman, K. S.; Green, M. L.H. J. Mol. Catal. A 2001, 175, 111. doi: 10.1016/S1381-1169(01)00205-9
(19) Solsona, B.; Blasco, T.; Nieto, J. M. L.; Pena, M. L.; Rey, F.;Vidal-Moya, A. J. Catal. 2001, 203, 443. doi: 10.1006/jcat.2001.3326
(20) Zhang, X. J.; Liu, J. X.; Jing, Y.; Xie, Y. C. Appl. Catal. A: Gen.2003, 240, 143. doi: 10.1016/S0926-860X(02)00426-X
(21) Cortes Corberan, V.; Jia, M. J.; EI-Haskouri, J.; Valenzuela, R.X.; Beltran-Porter, D.; Amoros, P. Catal. Today 2004, 91-92,127.
(22) Karakoulia, S. A.; Triantafyllidis, K. S.; Lemonidou, A. A.Microporous Mesoporous Mat. 2008, 110, 157. doi: 10.1016/j.micromeso.2007.10.027
(23) Peña, M. L.; Dejoz, A.; Fornés, V.; Rey, E.; Vazquez, M. I.;Nieto, J. M. L. Appl. Catal. A: Gen . 2001, 209, 155.
(24) Buyevskaya, O. V.; Bruckner, A.; Kondratenko, E. V.;Wolf, D.;Baerns, M. Catal. Today 2001, 67, 369. doi: 10.1016/S0920-5861(01)00329-7
(25) Mitran, G.; Cacciaguerra, T.; Loridant, S.; Tichit, D.; Marcu, I.C. Appl. Catal. A: Gen. 2012, 417-418, 153.

[1] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1785-1794.
[2] QIU Song-Bai, WENG Yu-Jing, LIU Qi-Ying, MA Long-Long, ZHANG Qi, WANG Tie-Jun. Preparation of Highly Dispersed Co/SiO2 Catalyst Using Ethylene Glycol and Its Application in Vapor-Phase Hydrogenolysis of Ethyl Lactate to 1,2-Propanediol[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1511-1518.
[3] ZHU Shan-Hui, WANG Jian-Guo, FAN Wei-Bin. Advances in Catalytic Hydrogenolysis of Glycerol to Fine Chemicals[J]. Acta Phys. Chim. Sin., 2016, 32(1): 85-97.
[4] HUANG Wei-Xin, QIAN Kun, WU Zong-Fang, CHEN Shi-Long. Structure-Sensitivity of Au Catalysis[J]. Acta Phys. Chim. Sin., 2016, 32(1): 48-60.
[5] HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1374-1382.
[6] ZHAO Feng-Wei, SHEN Mei-Yu, WANG Lin, DU Chang-Hai. Preparation of Amorphous Co-B/γ-Al2O3 Catalyst and Its Performance in Catalytic Liquid Phase Hydrogenation of Ethyl Lactate[J]. Acta Phys. Chim. Sin., 2015, 31(3): 527-532.
[7] LONG Jin-Xing, YUAN Zheng-Qiu, MA Hao, SHU Ri-Yang, LI Xue-Hui. Catalytic Synthesis of Trimethylolpropane in the Presence of Basic Ionic Liquid[J]. Acta Phys. Chim. Sin., 2015, 31(2): 337-343.
[8] ZHANG Lan-Lan, SONG Yu, LI Guo-Dong, ZHANG Shao-Long, SHANG Yun-Shan, GONG Yan-Jun. ZSM-5 Zeolite with Micro-Mesoporous Structures Synthesized Using Different Templates for Methanol to Propylene Reaction[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2139-2150.
[9] ZHANG Shao-Long, ZHANG Lan-Lan, WANG Wu-Gang, MIN Yuan-Yuan, MATong, SONG Yu, GONG Yan-Jun, DOU Tao. Methanol to Propylene over Nanosheets of HZSM-5 Zeolite[J]. Acta Phys. Chim. Sin., 2014, 30(3): 535-543.
[10] YU Qiu-Jie, ZHOU Bin, ZHANG Zhi-Hua, LIU Guang-Wu, DU Ai. Antimony-Doped Tin Oxide Aerogel Based on Epoxide Additional Method[J]. Acta Phys. Chim. Sin., 2014, 30(3): 500-507.
[11] GUO Xing-Zhong, LI Wen-Yan, ZHU Yang, NAKANISHI Kazuki, KANAMORI Kazuyoshi, YANG Hui. Macroporous SiO2 Monoliths Prepared via Sol-Gel Process Accompanied by Phase Separation[J]. Acta Phys. Chim. Sin., 2013, 29(03): 646-652.
[12] WANG Feng, YAN Shu-Jun, YONG Xiao-Jing, LUO Chun-Tao, ZHANG Qing, WEN Peng-Yu, GONG Yan-Jun, DOU Tao. Effects of Na+ in Dilution Steam and Coke Deposition on Catalytic Performance of Methanol-to-Propylene Catalysts[J]. Acta Phys. Chim. Sin., 2013, 29(02): 358-364.
[13] ZUO Yi, SONG Wan-Cang, WANG Meng-Li, XU Yong-Hai, WANG Xiang-Sheng, GUO Xin-Wen. Epoxidation of Propylene over Small-Crystal TS-1 Extrudate in a Fixed-Bed Reactor[J]. Acta Phys. Chim. Sin., 2013, 29(01): 183-190.
[14] XU Wei-Wei, DU Ai, TANG Jun, CHEN Ke, ZOU Li-Ping, ZHANG Zhi-Hua, SHEN Jun, ZHOU Bin. Rapid Preparation of Highly Doped CuO/SiO2 Composite Aerogels[J]. Acta Phys. Chim. Sin., 2012, 28(12): 2958-2964.
[15] LU Huai-Qian, SHI Lei, HE Chong, WENG Wei-Zheng, HUANG Chuan-Jing, WAN Hui-Lin. Highly-Dispersed NiO Nanoparticles on SBA-15 for Oxidative Dehydrogenation of Propane to Propylene[J]. Acta Phys. Chim. Sin., 2012, 28(11): 2697-2704.