Please wait a minute...
Acta Phys. Chim. Sin.
PHYSICAL CHEMISTRY OF MATERIALS     
Preparation and Characterization of Ag/CNTs Nanocomposite and Its Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine
AN Ting1, CAO Hui-Qun2, ZHAO Feng-Qi1, REN Xiao-Ning1, TIAN De-Yu2, XU Si-Yu1, GAO Hong-Xu1, TAN Yi1, XIAO Li-Bai1
1. Science and Technology on Combustion and Explosion Laboratory, Xi?an Modern Chemistry Research Institute, Xi?an 710065, P. R. China;
2. Shenzhen Key Laboratory of New Lithium-ion Battery and Mesoporous Materials, College of Chemistry and Chemical Engineering, Shenzhen 518060, Guangdong Province, P. R. China
Download:   PDF(866KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Two kinds of Ag/CNTs (carbon nanotubes) nanocomposite materials were successfully prepared by silver mirror reaction and hydrothermal methods. Their physical phase, composition, morphology, and structure were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscope-energy dispersive spectrometry (SEM-EDS). Catalytic effects of the Ag/CNTs nanocomposite on the thermal decomposition of cyclotrimethylene trinitramine (RDX) were investigated by differential scanning calorimetry (DSC). Our results indicated that the irregularly globose nano-Ag particles attached to the surface of the nano CNTs evenly. The nanocomposite product prepared hydrothermally had the highest loading of nano-Ag particles and largest Ag particle size. Both Ag/CNTs nanocomposites influenced the thermal decomposition of RDX, changing the primary decomposition of the liquid phase to a secondary gas phase reaction and resulting in obvious change in the shape of the main decomposition peak. The catalytic effect of Ag/CNTs nanocomposite on the thermal decomposition of RDX was mainly exhibited at lower decomposition temperature.



Key wordsCarbon nanotube      Nanocomposite      Cyclotrimethylene trinitramine      Silver mirror reaction      Hydrothermal method      Thermal decomposition     
Received: 09 March 2012      Published: 29 June 2012
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21173163) and Science and Technology Foundation of Science and Technology on Combustion and Explosion Laboratory, China (9140C3501041001).

Corresponding Authors: CAO Hui-Qun     E-mail: chq0524@163.com
Cite this article:

AN Ting, CAO Hui-Qun, ZHAO Feng-Qi, REN Xiao-Ning, TIAN De-Yu, XU Si-Yu, GAO Hong-Xu, TAN Yi, XIAO Li-Bai. Preparation and Characterization of Ag/CNTs Nanocomposite and Its Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine. Acta Phys. Chim. Sin., 2012, 28(09): 2202-2208.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201206292     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I09/2202

(1) Zhu, H.W.;Wu, D. H.; Xu, C. L. Carbon Nanotubes; ChinaMachine Press: Beijing, 2003. [朱宏伟, 吴德海, 徐才录. 碳纳米管. 北京: 机械工业出版社, 2003.]
(2) An, T.; Zhao, F. Q.; Xiao, L. B. Chin. J. Explos. Propell. 2010,33 (3), 55. [安亭, 赵凤起, 肖立柏. 火炸药学报, 2010, 33 (3), 55.]
(3) Wang, X. F.; Cai, X. L. Powder Metallurgy Industry 2010, 20 (6), 41. [王晓飞, 蔡晓兰. 粉末冶金工业, 2010, 20 (6), 41.]
(4) Chen, H. Z.; Zhou, R. J.;Wang, M. In situ Preparation inSolution Method of Carbon Nanotube Complexes Coated withGold Nanoparticles Uniformly. CN Patent 1994625,2007-07-11. [陈红征, 周仁甲, 汪茫. 纳米金粒子均匀包覆的碳纳米管复合物的原位溶液制备方法: 中国, CN1994625[P]. 2007-07-11.]
(5) Erik, T. T.; Ren, Z. F.; Chou, T.W. Composites Science and Technology 2001, 61 (13), 1899. doi: 10.1016/S0266-3538(01)00094-X
(6) Hansang, K.; Christopher, R. B.; Marc, L. Advanced Engineering Materials 2011, 13 (4), 325. doi: 10.1002/adem.201000251
(7) Alba, L. R.; Pamela, K. Weaponization and Characterization of Nanoenergetics; Oxford University Press: Oxford, 2003.
(8) Miziolek, A.W. The Amptica Newsletter 2002, 6 (1), 43.
(9) Huang, H.;Wang, Z. S.; Huang, H. J.; Li, J. S. Chin. J. Explos. Propell. 2005, 28 (4), 9. [黄辉, 王泽山, 黄亨建, 李金山.火炸药学报, 2005, 28 (4), 9.]
(10) Liu, X.; Hong,W. L.; Zhao, F. Q.; Tian, D. Y.; Zhang, J. X.; Li,Q. S. Journal of Solid Rocket Technology 2008, 31 (5), 508.[刘翔, 洪伟良, 赵凤起, 田德余, 张金霞, 李启舜. 固体火箭技术, 2008, 31 (5), 508.]
(11) Li, C. Y.; Chou, T.W. Journal of Nanoscience and Nanotechnology 2003, 3 (5), 423. doi: 10.1166/jnn.2003.233
(12) Wang, X. Y.; Zhang, J. C.; Zhu, H. Chinese Journal of Catalysis2011, 32 (1), 74. [王秀瑜, 张敬畅, 朱红. 催化学报, 2011,32 (1), 74.] doi: 10.1016/S1872-2067(10)60163-5
(13) Lei, Z. X.; Li, X. K.;Wang, H. Z.; Hong, X. Q.; Chen, J.W.New Carbon Materials 2002, 17 (4), 67. [雷中兴, 李轩科, 汪厚植, 洪学勤, 陈家唯. 新型炭材料, 2002, 17 (4), 67.]doi: 10.3321/j.issn:1007-8827.2002.04.014
(14) Nan, C.W.; Liu, G.; Lin, Y. H.; Li, M. Applied Physics Letters2004, 85 (16), 3549. doi: 10.1063/1.1808874
(15) Huang, J. H.; Sun, X. G.; Li, J.; Cao, S. Z. Materials Review2008, (1), 109. [黄建华, 孙晓刚, 李静, 曹素芝. 材料导报,2008, (1), 109.]
(16) Cao, H. Q.;Wei, B.;Wang, Y. Z.; Li, Y. G.; Zhu, M. F. Journal of the Chinese Ceramic Society 2009, 37 (10), 1772. [曹慧群,魏波, 王银治, 李耀刚, 朱美芳. 硅酸盐学报, 2009, 37 (10),1772.] doi: 10.3321/j.issn:0454-5648.2009.10.034
(17) Wu, Y. C.; Liu, X. L.; Ye, M.; Xie, T.; Huang, X. M. Acta Phys. -Chim. Sin. 2008, 24, 97. [吴玉程, 刘晓璐, 叶敏,解挺, 黄新民. 物理化学学报, 2008, 24, 97.] doi: 10.3866/PKU.WHXB20080117
(18) Zhou, L. M.; Hou, L. Q.; Liu, H. Y.; Li, F. S. Acta Chim. Sin.2006, 64 (15), 1548. [周龙梅, 侯立权, 刘宏英, 李凤生. 化学学报, 2006, 64 (15), 1548.]
(19) Jiang,W.; Liu, J. X.; Liu, Y.; Cui, P.; Li, F. S. Journal of Solid Rocket Technology 2008, 31 (1), 65. [姜炜, 刘建勋, 刘永, 崔平, 李凤生. 固体火箭技术, 2008, 31 (1), 65.]
(20) Hong,W. L.; Zhu, X. Y.; Zhao, F. Q.; Yi, J. H.; Gao, H. X.; Tian,D. Y. Chin. J. Explos. Propell. 2010, 33 (6), 83. [洪伟良, 朱秀英, 赵凤起, 仪建华, 高红旭, 田德余. 火炸药学报, 2010, 33 (6), 83.]
(21) Zhang, J. X.; Hong,W. L.; Zhao, F. Q.; Liu, J. H.; Tian, D. Y.;Zhu, X. Y.; Ma, Y. Q. Chin. J. Explos. Propell. 2011, 34 (2), 47.[张金霞, 洪伟良, 赵凤起, 刘剑洪, 田德余, 朱秀英, 马永强. 火炸药学报, 2011, 34 (2), 47.]
(22) Liu, Z. R. Thermal Analyses for Energetic Materials; NationalDefence Industry Press: Beijing, 2008. [刘子如. 含能材料热分析. 北京: 国防工业出版社, 2008.]
(23) Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Shi, Q. Z.; Zhang, T. L.;Zhang, J. J. Thermal Analysis Kinetics, 2nd ed.; Science Press:Beijing, 2008. [胡荣祖, 高胜利, 赵凤起, 史启祯, 张同来,张建军. 热分析动力学(第二版). 北京: 科学出版社, 2008]
(24) An, T.; Zhao, F. Q.; Yi, J. H.; Fan, X. Z.; Gao, H. X.; Hao, H.X.;Wang, X. H.; Hu, R. Z.; Pei, Q. Acta Phys. -Chim. Sin. 2011,27, 281. [安亭, 赵凤起, 仪建华, 樊学忠, 高红旭, 郝海霞,王晓红, 胡荣祖, 裴庆. 物理化学学报, 2011, 27, 281.] doi: 10.3866/PKU.WHXB20110213
(25) Chang, J. H.; Dong, Q. G. Principle and Analysis of Spectroscopy, 2nd ed.; Science Press: Beijing, 2005. [常建华,董绮功. 波谱原理及解析(第二版). 北京: 科学出版社, 2005.]
(26) Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.;Takigawa, T.; Ishii, N.; Aida, T. Science 2003, 300, 2072.

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[3] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[4] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[5] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[7] PENG Li-Juan, YAO Qian, WANG Jing-Bo, LI Ze-Rong, ZHU Quan, LI Xiang-Yuan. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Phys. Chim. Sin., 2017, 33(4): 745-754.
[8] YU Hai-Yang, WANG Fang, LIU Qi-Chun, MA Qing-Yu, GU Zheng-Gui. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Phys. Chim. Sin., 2017, 33(2): 344-355.
[9] TANG Yan-Ping, YUAN Sha, GUO Yu-Zhong, HUANG Rui-An, WANG Jian-Hua, YANG Bin, DAI Yong-Nian. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2280-2286.
[10] JIN Cheng-Wei, WANG Ye, XU Su-Ling, ZHANG Jian-Jun. Synthesis, Crystal Structures and Thermochemical Properties of Ternary Rare Earth Complexes Based on 3,4-Diethoxybenzoic Acid and 2,2'-Bipyridine[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2232-2240.
[11] XIONG Wen-Hui, ZHANG Wen-Chao, YU Chun-Pei, SHEN Rui-Qi, CHENG Jia, YE Jia-Hai, QIN Zhi-Chun. Preparation of Nanoporous CoFe2O4 and Its Catalytic Performance during the Thermal Decomposition of Ammonium Perchlorate[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2093-2100.
[12] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[13] XIA Ji-Ye, DONG Guo-Dong, TIAN Bo-Yuan, YAN Qiu-Ping, HAN Jie, QIU Song, LI Qing-Wen, LIANG Xue-Lei, PENG Lian-Mao. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Phys. Chim. Sin., 2016, 32(4): 1029-1035.
[14] HUO Jian-Xia, SONG Su-Wei, JIN Cheng-Wei, REN Ning, GENG Li-Na, ZHANG Jian-Jun. Synthesis, Characterization, Thermal Decomposition Mechanism and Properties of the [Eu(4-MOBA)3(terpy)(H2O)]2 Complex[J]. Acta Phys. Chim. Sin., 2016, 32(4): 901-906.
[15] LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi. Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Phys. Chim. Sin., 2016, 32(3): 691-700.