Please wait a minute...
Acta Phys. Chim. Sin.
Fabrication of Bi2O3/Bi2O3 Nanotube Arrays with High Visible-Light Photocatalytic Activity by Impregnation-Decomposition Method
DAI Gao-Peng, LIU Su-Qin, PENG Rong, LUO Tian-Xiong
School of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, P. R. China
Download:   PDF(1299KB) Export: BibTeX | EndNote (RIS)      


Bi2O3/TiO2 nanotube arrays (NTs) were prepared by depositing Bi2O3 nanoparticles (NPs) onto the tube wall of self-organized TiO2 NTs using an impregnation-decomposition method. Chemical composition of the resulting Bi2O3/TiO2 NTs was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-visible (UV-Vis) diffuse reflectance spectroscopy. Photocatalytic activity was evaluated by degradation of aqueous methyl orange (MO) solution under visible-light irradiation (λ>400 nm). The Bi2O3 nanoparticles were found to be uniformly deposited into the nanotubes. Bi2O3/TiO2 NTs exhibited much higher visible-light activity than pure Bi2O3 films and N-TiO2 NTs, which was attributed to synergistic effects of the strong visible-light absorption of Bi2O3/TiO2 NTs and the heterojunction formed between Bi2O3 and TiO2.

Key wordsBi2O3/TiO2 nanotube array      Visible light      Photocatalysis      Heterojunction      Synergetic effect     
Received: 28 May 2012      Published: 04 July 2012
MSC2000:  O644  

The project was supported by the Research Program of Hubei Province Department of Education, China (T201215, Q20122507).

Cite this article:

DAI Gao-Peng, LIU Su-Qin, PENG Rong, LUO Tian-Xiong. Fabrication of Bi2O3/Bi2O3 Nanotube Arrays with High Visible-Light Photocatalytic Activity by Impregnation-Decomposition Method. Acta Phys. Chim. Sin., 2012, 28(09): 2169-2174.

URL:     OR

(1) Tu, Y. F.; Huang, S. Y.; Sang, J. P.; Zou, X.W. Mater. Res. Bull.2010, 45, 224. doi: 10.1016/j.materresbull.2009.08.020
(2) Yu, J. G.; Dai, G. P.; Cheng, B. J. Phys. Chem. C 2010, 114,19378. doi: 10.1021/jp106324x
(3) Wu, Q.; Su, Y. F.; Sun, L.;Wang, M. Y.;Wang, Y. Y.; Lin, C. J.Acta Phys. -Chim. Sin. 2012, 28, 635. [吴奇, 苏钰丰,孙岚, 王梦晔, 王莹莹, 林昌健. 物理化学学报, 2012, 28,635.] doi: 10.3866/PKU.WHXB201112231
(4) Liu, Z. Y.; Pesic, B.; Raja, K. S.; Rangaraju, R. R.; Misra, M.Int. J. Hydrog. Energy 2009, 34, 3250. doi: 10.1016/j.ijhydene.2009.02.044
(5) Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S.J. Catal. 2007, 246, 362. doi: 10.1016/j.jcat.2006.12.020
(6) Park, J. H.; Kim, S.; Bard, A. J. Nano Lett. 2006, 6, 24. doi: 10.1021/nl051807y
(7) Varghese, O. K.; Paulose, M.; Grimes, C. A. Nat. Nanotechnol.2009, 4, 592.
(8) Li, H. H.; Chen, R. F.; Ma, C.; Zhang, S. L.; An, Z. F.; Huang,W. Acta Phys. -Chim. Sin. 2011, 27, 1017. [李欢欢, 陈润锋,马琮, 张胜兰, 安众福, 黄维. 物理化学学报, 2011, 27,1017.] doi: 10.3866/PKU.WHXB20110514
(9) Kuang, D.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura,H.; Sumioka, K.; Zakeeruddin, S. M.; Grätzel, M. ACS Nano2008, 2, 1113. doi: 10.1021/nn800174y
(10) Zheng, Q.; Zhou, B. X.; Bai, J.; Li, L. H.; Jin, Z. J.; Zhang, J.L.; Li, J. H.; Liu, Y. B.; Cai,W. M.; Zhu, X. Y. Adv. Mater.2008, 20, 1044. doi: 10.1002/adma.200701619
(11) Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Ong,K. G. Nanotechnology 2006, 17, 398. doi: 10.1088/0957-4484/17/2/009
(12) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemann, D.W.Chem. Rev. 1995, 95, 69. doi: 10.1021/cr00033a004
(13) Berger, T.; Sterrer, M.; Diwald, O.; Knozinger, E.; Panayotov,D.; Thompson, T. L.; Yates, J. T. J. Phys. Chem. B 2005, 109,6061. doi: 10.1021/jp0404293
(14) Kumar, S.; Fedorov, A. G.; Gole, J. L. Appl. Catal. B 2005, 57,93. doi: 10.1016/j.apcatb.2004.10.012
(15) Sun,W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M.J. Am. Chem. Soc. 2008, 130, 1124. doi: 10.1021/ja0777741
(16) Chen, S. G.; Paulose, M.; Ruan, C. M.; Mor, G. K.; Varghese, O.K.;Kouzoudis,D.;Grimes, C.A. J. Photochem. Photobiol. 2006,177, 177. doi: 10.1016/j.jphotochem.2005.05.023
(17) Zhang, H.; Quan, X.; Chen, S.; Yu, H. T.; Ma, N. Chem. Mater.2009, 21, 3090. doi: 10.1021/cm900100k
(18) Shin, K.; Seok, S. I.; Im, S. H.; Park, J. H. Chem. Commun.2010, 46, 2385. doi: 10.1039/b923022j
(19) Seabold, J. A.; Shankar, K.;Wilke, R. H. T.; Paulose, M.;Varghese, O. K.; Grimes, C. A. Chem. Mater. 2008, 20, 5266.doi: 10.1021/cm8010666
(20) Gao, X. F.; Li, H. B.; Sun,W. T.; Chen, Q.; Tang, F. Q.; Peng, L.M. J. Phys. Chem. C 2009, 113, 7531. doi: 10.1021/jp810727n
(21) Hou, Y.; Li, X. Y.; Zou, X. J.; Quan, X.; Chen, G. H. Environ. Sci. Technol. 2009, 43, 858. doi: 10.1021/es802420u
(22) Lee, M. K.; Shih, T. H. J. Electrochem. Soc. 2007, 154, 49.
(23) Bessekhouad, Y.; Robert, D.;Weber, J. V. Catal. Today 2005,101, 315. doi: 10.1016/j.cattod.2005.03.038
(24) Zhang, L. S.;Wang,W. Z.; Yang, J.; Chen, Z. G.; Zhang,W. Q.;Zhou, L.; Liu, S.W. Appl. Catal. A 2006, 308, 105. doi: 10.1016/j.apcata.2006.04.016
(25) Zhou, L.;Wang,W. Z.; Xu, H. L.; Sun, S. M.; Shang, M. Chem. Eur. J. 2009, 15, 1776. doi: 10.1002/chem.200801234
(26) Hameed, A.; Gombac, V.; Montini, T.; Felisri, L.; Fornasiero, P.Chem. Phys. Lett. 2009, 483, 254. doi: 10.1016/j.cplett.2009.10.087
(27) Bian, Z. F.; Zhu, J.;Wang, S. H.; Cao, Y.; Qian, X. F.; Li, H. X.J. Phys. Chem. C 2008, 112, 6258. doi: 10.1021/jp800324t
(28) Shamaila, S.; Sajjad, A. K. L.; Chen, F.; Zhang, J. L. Appl. Catal. B 2010, 94, 272. doi: 10.1016/j.apcatb.2009.12.001
(29) Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.;Grimes, C. A. J. Phys. Chem. C 2007, 111, 7235. doi: 10.1021/jp070273h
(30) Lai, Y. K.; Huang, J. Y.; Zhang, H. F.; Subramaniam, V. P.; Tang,Y. X.; Gong, D. G.; Sundar, L.; Sun, L.; Chen, Z.; Lin, C. J.J. Hazard. Mater. 2010, 184, 855. doi: 10.1016/j.jhazmat.2010.08.121
(31) Yu, J. G.; Yu, H. G.; Cheng, B.; Zhao, X. J.; Yu, J. C.; Ho,W. K.J. Phys. Chem. B 2003, 107, 13871. doi: 10.1021/jp036158y
(32) Zhu, H. M.; Yang, B. F.; Xu, J.; Fu, Z. P.;Wen, M.W.; Guo, T.;Fu, S. Q.; Zuo, J.; Zhang, S. Y. Appl. Catal. B 2009, 90, 463.doi: 10.1016/j.apcatb.2009.04.006
(33) Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chem. Rev. 1995, 95,735. doi: 10.1021/cr00035a013
(34) Kim, Y. I.; Atherton, S. J.; Brigham, E. S.; Mallouk, T. E.J. Phys. Chem. 1993, 97, 11802. doi: 10.1021/j100147a038
(35) Butler, M. A.; Ginley, D. S. J. Electrochem. Soc. 1978, 125, 228.doi: 10.1149/1.2131419

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[3] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[4] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[5] CHEN Xin, HU Shao-Zheng, LI Ping, LI Wei, MA Hong-Fei, LU Guang. Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2532-2541.
[6] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[7] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[8] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[9] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[10] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[11] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[12] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[13] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[14] TANG Wei, WANG Jing. Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1087-1104.
[15] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.