Please wait a minute...
Acta Phys. Chim. Sin.  2012, Vol. 28 Issue (11): 2713-2720    DOI: 10.3866/PKU.WHXB201207163
CATALYSIS AND SURFACE SCIENCE     
Photocatalytic Properties of Aluminum Doped Zinc Oxide Nanocrystals Controlled Prepared via a Synergistic Ultrasonic/Hydrothermal Technique
YANG Xiao-Hong2, TONG Qin1, LIU Chang1, LIU Jin-Ku1, HE Wen-Zhi3, LI Guang-Ming3
1. Department of Chemistry, East China University of Science and Technology, Shanghai 200237, P.R. China;
2. 2Department of Chemistry, Chizhou University, Chizhou 247000, Anhui Province, P.R. China;
3. School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
Download:   PDF(4179KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Aluminum doped zinc oxide (ZAO) nanocrystals approximately 20 nm in diameter and with good dispersity and crystallinity were efficiently synthesized through a synergistic combination of ultrasonic and hydrothermal methods. The morphologies, structures, and optical properties of these nanocrystals, as well as the thermochemistry of the precursor, were determined using transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and thermogravimetric-differential thermal analysis (TG-DTA). ZAO nanocrystals were investigated with regard to the photocatalysis of rhodamine B (RhB) in solution, including studies of degradation rates and catalysis mechanism. It was found that both the particle size and crystallinity of the material can be controlled through the ultrasonic/hydrothermal synergetic effect. The main absorption peak of the product in a typical UV-Vis spectrum appeared at ~369 nm and its energy band gap was determined to be 3.36 eV. The ZAO produced by this method exhibits enhanced photocatalytic activity; compared to catalysis by materials produced solely by ultrasonic or hydrothermal routes, the degradation time of an RhB solution is reduced by 77.8%. In addition, it was found that this ZAO photocatalyst may be recycled and used more than once.



Key wordsUltrasonic route      Hydrothermal route      Aluminum doped zinc oxide      Nanocrystal      Photocatalysis     
Received: 17 May 2012      Published: 16 July 2012
MSC2000:  O643  
  O644  
  O648  
Fund:  

The project was supported by the National Natural Science Foundation of China (21071024) and the State Key Laboratory of Pollution Control, Resource Reuse Foundation (PCRRF11019).

Cite this article:

YANG Xiao-Hong, TONG Qin, LIU Chang, LIU Jin-Ku, HE Wen-Zhi, LI Guang-Ming. Photocatalytic Properties of Aluminum Doped Zinc Oxide Nanocrystals Controlled Prepared via a Synergistic Ultrasonic/Hydrothermal Technique. Acta Phys. Chim. Sin., 2012, 28(11): 2713-2720.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201207163     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2012/V28/I11/2713

(1) Luo, C. X.;Wang, Y.; Liu, J. K.; Lian, J. S.; Chai, C. F. Acta Phys. -Chim. Sin. 2008, 24, 1007. [罗重霄, 王燕, 刘金库,连加松, 柴春芳. 物理化学学报, 2008, 24, 1007.] doi: 10.3866/PKU.WHXB20080616
(2) Luo, C. X.; Liu, J. K.; Lu, Y.; Du, C. S. Mater. Sci. Eng. C 2012,33, 680.
(3) Zhang, L. L.; Xie, H. Z.; Zhang, M.; Liu, J. K. Nano 2012, 7,1250017.
(4) Shi, H.W.; Xie, H. Z.; Liu, J. K.;Wang, Y. Nano 2010, 5, 215.doi: 10.1142/S1793292010002128
(5) Lin, J. P.;Wu, J. M. Scripta Materialia 2009, 60, 313. doi: 10.1016/j.scriptamat.2008.10.023
(6) Lu, J.;Wang, H. Optics Express 2011, 19, 13806. doi: 10.1364/OE.19.013806
(7) Caglar, Y.; Caglar, M.; Ilican, S. Curr. Appl. Phys. 2012, 12,963. doi: 10.1016/j.cap.2011.12.017
(8) Cheng, Y. C. Appl. Surf. Sci. 2011, 258, 604. doi: 10.1016/j.apsusc.2011.07.124
(9) Mamat, M. H.; Khusaimi, Z.; Musa, M. Z.; Malek, M. F.;Rusop, M. Sensors and Actuators A: Physical 2011, 171, 241.doi: 10.1016/j.sna.2011.07.002
(10) Buonsanti, R.; Llordes, A.; Aloni, S.; Helms, B. A.; Milliron, D.J. Nano Lett. 2011, 11, 4706. doi: 10.1021/nl203030f
(11) Fouad, O. A.; Rahman, A. E.; Khder. S.; Dai, Q.; El-Shall, M. S.J. Nanopart. Res. 2011, 13, 7075. doi: 10.1007/s11051-011-0620-8
(12) Kim, K. P.; Chang, D.; Lim, S. K.; Lee, S. K.; Lyu, H. K.;Hwang, D. K. Curr. Appl. Phys. 2011, 11, 1311. doi: 10.1016/j.cap.2011.03.065
(13) Gan, L. H.; Liu, M. X.; Chen, L.W.; Hu, J.; Liu, H. L. Acta Phys. -Chim. Sin. 2010, 26, 2666. [甘礼华, 刘明贤, 陈龙武,胡军, 刘洪来. 物理化学学报, 2010, 26, 2666.] doi: 10.3866/PKU.WHXB20100933
(14) Li, Y. Y.; Yan, B.; Guo, L.; Li, Y. J. Microporous Mesoporous Mat. 2012, 148, 73. doi: 10.1016/j.micromeso.2011.07.020
(15) Zhang, J.; Hao, J.;Wei, Y. G.; Xiao, F. P.; Yin, P. C.;Wang, L. S.J. Am. Chem. Soc. 2010, 132, 5956. doi: 10.1021/ja101671q
(16) Zhang, Q.; Yan, B. Chem. Commun. 2011, 47, 5867. doi: 10.1039/c1cc11367d
(17) Zhang, L.; Shen, Y. H.; Xie, A. J. J. Mater. Chem. 2009, 19,1884. doi: 10.1039/b817071a
(18) Liu, J. K.; Luo, C. X.; Yang, X. H.; Zhang, X. Y. Mater. Lett.2009, 63, 124. doi: 10.1016/j.matlet.2008.09.029
(19) Wang, J. D.; Luo, C. X.; Liu, J. K.; Lu, Y.; Li, G. M. Nano2010, 5, 271. doi: 10.1142/S1793292010002177
(20) Xu, K.; Shen, L. F.; Mi, C. H.; Zhang, X. G. Acta Phys. -Chim. Sin. 2012, 28, 105. [徐科, 申来法, 米常焕, 张校刚. 物理化学学报, 2012, 28, 105.] doi: 10.3866/PKU.WHXB201228105
(21) Liu, J. K.; Cao, T. J.; Lu, Y.; Luo, C. X. Mater. Technol. 2009,24, 88.
(22) Liu, Y. F.; Ma, X. G.; Yi, X.; Zhu, Y. F. Acta Phys. -Chim. Sin.2012, 28, 654. [刘艳芳, 马新国, 易欣, 朱永法. 物理化学学报, 2012, 28, 654.] doi: 10.3866/PKU.WHXB201112232
(23) Major, C.; Nemeth, A.; Radnoczi, G.; Czigany, Z.; Fried, M.;Labadi, Z.; Barsony, I. Appl. Surf. Sci. 2009, 255, 8907. doi: 10.1016/j.apsusc.2009.06.088
(24) Li, Z. Q.; Xiong, Y. J.; Xie, Y. Inorg. Chem. 2003, 42, 8105. doi: 10.1021/ic034029q
(25) Han, D.; Ren, X. L.; Chen, D.; Tang, F. Q.;Wang, D.; Ren, J. Photographic Science and Photochemistry 2005, 23, 414.[韩冬, 任湘菱, 陈东, 唐芳琼, 王冬, 任俊. 感光科学与光化学, 2005, 23, 414.]
(26) Yin, X. G.; Zhang, Q. K.; Liu, J. K.; Zhong, X. H.; Chai, R.;Lian, J. S.; Chai, C. F. Acta Phys. -Chim. Sin. 2009, 25, 1443.[尹晓光, 张琪凯, 刘金库, 钟新华, 柴瑞, 连加松, 柴春芳.物理化学学报, 2009, 25, 1443.] doi: 10.3866/PKU.WHXB20090724
(27) Yang, X. H.; Liu, C.; Liu, J. K.; Zhu, Z. C. Acta Phys. -Chim. Sin. 2011, 27, 2939. [杨小红, 刘畅, 刘金库, 朱子春. 物理化学学报, 2011, 27, 2939.] doi: 10.3866/PKU.WHXB20112939
(28) Hsiao, K. C.; Liao, S. C.; Chen, Y. J. Mater. Sci. Eng. A 2007,447, 71. doi: 10.1016/j.msea.2006.10.116
(29) Zhang, L.W.; Cheng, H. Y.; Zong, R. L.; Zhu, Y. F. J. Phys. Chem. C 2009, 113, 2368. doi: 10.1021/jp807778r
(30) Wu, Y.; Gao, J.; He, Y. M.;Wu, T. H. Appl. Surf. Sci. 2012, 258,4922. doi: 10.1016/j.apsusc.2012.01.120
(31) He, Y. M.;Wang, Y. J.; Zhao, L. H.;Wu, X. T.;Wu, Y. J. Mol. Catal. A-Chem. 2011, 337, 61. doi: 10.1016/j.molcata.2011.01.015
(32) Cong, Y. Q.; Li, Z.;Wang, Q.; Zhang, Y.; Xu, Q.; Fu, F. X. Acta Phys. -Chim. Sin. 2012, 28, 1489. [丛燕青, 李哲, 王齐,张轶, 徐谦, 伏芳霞. 物理化学学报, 2012, 28, 1489.]doi: 10.3866/PKU.WHXB201203221
(33) Su, Y. L.; Li, Y.; Du, Y. X.; Lei, L. C. Acta Phys. -Chim. Sin.2011, 27, 939. [苏雅玲, 李轶, 杜瑛珣, 雷乐成. 物理化学学报, 2011, 27, 939.] doi: 10.3866/PKU.WHXB20110401
(34) Bi, D. Q.; Xu, Y. M. Acta Phys. -Chim. Sin. 2012, 28, 1777.[毕冬琴, 许宜铭. 物理化学学报, 2012, 28, 1777.] doi: 10.3866/PKU.WHXB201205113
(35) Li, H. Q.; Cui, Y. M.;Wu, X. C.; Hua, L.; Hong,W. S. Acta Phys. -Chim. Sin. 2012, 28, 1985. [李慧泉, 崔玉民, 吴兴才,华林, 洪文珊. 物理化学学报, 2012, 28, 1985.] doi: 10.3866/PKU.WHXB201205161
(36) Lin, X.; Guan, Q. F.; Li, H. B.; Li, H. J.; Ba, C. H.; Deng, H. D.Acta Phys. -Chim. Sin. 2012, 28, 1481. [林雪, 关庆丰, 李海波, 李洪吉, 巴春华, 邓海德. 物理化学学报, 2012, 28, 1481.]doi: 10.3866/PKU.WHXB201203313

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[3] ZHOU Xiao-Qin, ZHANG Hui, ZHANG Ze, CHEN Xin, JIN Chuan-Hong. Characterization of Heterostructural Palladium Deposition on Spherical Gold Nanoparticles by In situ Liquid Cell Transmission Electron Microscopy[J]. Acta Phys. Chim. Sin., 2017, 33(3): 458-463.
[4] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[5] WANG Ya-Nan, MA Pin, PENG Lu-Mei, ZHANG Di, FANG Yan-Yan, ZHOU Xiao-Wen, LIN Yuan. Synthesis of Colloidal Perovskite CH3NH3PbBr3-xClx Nanocrystals with Lead Acetate[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2099-2105.
[6] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[7] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[8] LIU Wei-Yan, LI Ya-Dong, LIU Tian, GAN Lin. Investigation of the Growth Mechanism and Compositional Segregations of Monodispersed Ferrite Nanoparticles by Transmission Electron Microscopy[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2106-2112.
[9] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[10] XU Han, TONG Ye-Xiang, LI Gao-Ren. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2171-2184.
[11] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[12] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[13] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[14] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[15] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.