Please wait a minute...
Acta Phys. Chim. Sin.
Novel Organosilicon Ionic Liquid Based Electrolytes for Supercapacitors
ZhONG Hao-Xiang, ZHAO Chun-Bao, LUO Hao, ZHANG Ling-Zhi
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
Download:   PDF(657KB) Export: BibTeX | EndNote (RIS)      


A novel room temperature organosilicon ionic liquid (SiN1IL) was synthesized and its chemical structure and electrochemical window were characterized. The ionic conductivity of SiN1IL/propylene carbonate (PC)/acetonitrile (AN) solution was 19.6 mS·cm-1, comparable with the commercial electrolytes currently used in supercapacitors. The electrochemical performance of the cells using activated carbon as electrodes and SiN1IL-based formula with PC/AN as electrolytes was systematically evaluated. SiN1IL/PC electrolyte exhibited superior rate capability and lower impedance compared to a conventional electrolyte (tetraethylammonium tetrafluoroborate (Et4NBF4)/PC). Upon applying a working voltage of 2.7 V, the SiN1IL/PC cell had a specific capacitance of 108 F·g-1 at a current density of 1000 mA·g-1.

Key wordsOrganosilicon      Ionic liquid      Supercapacitor      Electrolyte      Activated carbon     
Received: 02 July 2012      Published: 18 July 2012
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (50973112); Science and Technology Plan Project of Guangzhou Municipality, China (11A44061500); Chinese Academy of Sciences -Guangdong Collaboration Program (2010(8)); and the Hundred Talents Program of Chinese Academy of Sciences (CAS).

Cite this article:

ZhONG Hao-Xiang, ZHAO Chun-Bao, LUO Hao, ZHANG Ling-Zhi. Novel Organosilicon Ionic Liquid Based Electrolytes for Supercapacitors. Acta Phys. Chim. Sin., 2012, 28(11): 2641-2647.

URL:     OR

(1) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.;Schalkwijk,W. V. Nat. Mater. 2005, 4, 366. doi: 10.1038/nmat1368
(2) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157,11. doi: 10.1016/j.jpowsour.2006.02.065
(3) Arbizzani, C.; Maatragostino, M.; Soavi, F. J. Power Sources2001, 100, 164. doi: 10.1016/S0378-7753(01)00892-8
(4) Arulepp, M.; Permann, L.; Leis, J.; Perkson, A.; Rumma, K.;Jänes, A.; Lust, E. J. Power Sources 2004, 133, 320. doi: 10.1016/j.jpowsour.2004.03.026
(5) Ding, M. S.; Xu, K.; Zheng, J. P.; Jow, T. R. J. Power Sources2004, 138, 340. doi: 10.1016/j.jpowsour.2004.06.039
(6) Lazzari, M.; Mastragostino, M.; Soavi, F. Electrochem. Commun. 2007, 9, 1567. doi: 10.1016/j.elecom.2007.02.021
(7) Jayalakshmi, M.; Rao, M.; Choudary, B. M. Electrochem. Commun. 2004, 6, 1119. doi: 10.1016/j.elecom.2004.09.004
(8) Wang, Y. G.; Xia, Y. Y. Electrochim. Acta 2006, 51, 3223. doi: 10.1016/j.electacta.2005.09.013
(9) Wang, H. Q.; Li, Z. S.; Huang, Y. G.; Li, Q. Y.;Wang, X. Y.J. Mater. Chem. 2010, 20, 3883. doi: 10.1039/c000339e
(10) Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett.2008, 8, 3498. doi: 10.1021/nl802558y
(11) Balducci, A.; Bardi, U.; Caporali, S.; Mastragostino, M.; Soavi,F. Electrochem. Commun. 2004, 6, 566. doi: 10.1016/j.elecom.2004.04.005
(12) Wu, F.; Chen, R. J.;Wu, F.; Li, L.; Xu, B.; Chen, S.;Wang, G.Q. J. Power Sources 2008, 184, 402. doi: 10.1016/j.jpowsour.2008.04.062
(13) Li, F. Q.; La, Y. Q.; Gao, H. Q.; Zhang, Z. A. Battery 2008, 38,63. [李凡群, 赖延清, 高宏权, 张治安. 电池, 2008, 38, 63.]
(14) Chen, R. J.; Zhang, H. Q.;Wu, F. Prog. Chem. 2011, 23, 366.[陈人杰, 张海琴, 吴锋. 化学进展, 2011, 23, 366.]
(15) Xu, K. Chem. Rev. 2004, 104, 4303. doi: 10.1021/cr030203g
(16) Thamra, A.; Daniel, L.; Bénédicte, C. M. J. Power Sources2012, 201, 353. doi: 10.1016/j.jpowsour.2011.10.115
(17) Krause, A.; Balducci, A. Electrochem. Commun. 2011, 13, 814.doi: 10.1016/j.elecom.2011.05.010
(18) Lalia, B. S.; Yoshimoto, N.; Egashira, M.; Morita, M. J. Power Sources 2010, 195, 7426. doi: 10.1016/j.jpowsour.2010.05.040
(19) Kühnel, R. S.; Böckenfeld, N.; Passerini, S.;Winter, M.;Balducci, A. Electrochim. Acta 2011, 56, 4092. doi: 10.1016/j.electacta.2011.01.116
(20) Zhang, L. Z.; Zhao, X. Y.; Luo, H. Organosilicon Based IonicLiquids as Electrolytes forElectrochemical Energy StorageDevices. China Patent 201010265833.2, 2012-03-14. [张灵志, 赵欣悦, 骆浩. 有机硅醚室温离子液体电解质材料及其在电化学储能器件中的应用: 中国, 201010265833.2[P],2012-03-14]
(21) Tse, K. Y.; Zhang, L. Z.; Baker, S. E.;West, R.; Hamers, R. J.Chem. Mater. 2007, 19, 5734. doi: 10.1021/cm0714842
(22) Lazzari, M. Electrode Materials for Ionic LiquidBased-Supercapacitors. Ph. D. Dissertation, Università diBologna, Bologna, 2010.
(23) Cazorla-Amoro, D.; Lozano-Castello, D.; Morallon, E.;Bleda-Martinez, M. J.; Linares-Solano, A.; Shiraishi, S. Carbon2010, 48, 1451. doi: 10.1016/j.carbon.2009.12.039
(24) Balducci, A.; Dugas, R.; Taberna, P. L.; Simon, P.; Plée, D.;Mastragostino, M.; Passerini, S. J. Power Sources 2007, 165,922. doi: 10.1016/j.jpowsour.2006.12.048
(25) Frackowiak, E.; Lota, G.; Pernak, J. Appl. Phys. Lett. 2005, 86,164104. doi: 10.1063/1.1906320

[1] MA Qiang, HU Yongsheng, LI Hong, CHEN Liquan, HUANG Xuejie, ZHOU Zhibin. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Phys. Chim. Sin., 2018, 34(2): 213-218.
[2] TONG Jing, QU Ye, JING Liqiang, LIU Lu, LIU Chunhui. Measurement of Vapor Pressure and Vaporization Enthalpy for Ionic Liquids 1-Hexyl-3-methylimidazolium Threonine Salt[C6mim][Thr]by Isothermogravimetric Analysis[J]. Acta Phys. Chim. Sin., 2018, 34(2): 194-200.
[3] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[4] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[5] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[6] MENG Yan-Shuang, WANG Chen, WANG Lei, WANG Gong-Rui, XIA Jun, ZHU Fu-Liang, ZHANG Yue. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1915-1922.
[7] ZHAO Li-Ping, MENG Wei-Shuai, WANG Hong-Yu, QI Li. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. Chim. Sin., 2017, 33(4): 787-794.
[8] ZHENG Qi-Ge, LIU Hui, XIA Quan, LIU Qing-Shan, MOU Lin. Density, Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids[J]. Acta Phys. Chim. Sin., 2017, 33(4): 736-744.
[9] BAI Jin, CHEN Xin, XI Zhao-Yi, WANG Xiang, LI Qiang, HU Shao-Zheng. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(3): 611-619.
[10] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(3): 486-499.
[11] ZHENG Yan-Gong, ZHU Li-Na, LI Han-Yu, JIAN Jia-Wen, DU Hai-Ying. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Phys. Chim. Sin., 2017, 33(3): 573-581.
[12] TONG Jing, LIU Lu, ZHANG Duo, ZHENG Xu, CHEN Xia, YANG Jia-Zhen. Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala][J]. Acta Phys. Chim. Sin., 2017, 33(3): 513-519.
[13] YIN Jin-Ling, LIU Jia, WEN Qing, WANG Gui-Ling, CAO Dian-Xue. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Phys. Chim. Sin., 2017, 33(2): 370-376.
[14] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[15] XIE Yong-Min, WANG Xiao-Qiang, LIU Jiang, YU Chang-Lin. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. Chim. Sin., 2017, 33(2): 386-392.