Please wait a minute...
Acta Phys. -Chim. Sin.
Adsorption of Core-Shell Poly(Methyl Methacrylate)-Bovine Serum Albumin Nanoparticles on Gold Surface and Its Sensor Application
HE Chuan-Xin, YUAN An-Peng, ZHANG Qian-Lin, REN Xiang-Zhong, LI Cui-Hua, LIU Jian-Hong
Shenzhen Key Laboratory of Functional Polymer, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen518060, Guangdong Province, P. R. China
Download:   PDF(2132KB) Export: BibTeX | EndNote (RIS)      


Core-shell poly(methyl methacrylate)-bovine serum albumin (PMMA-BSA) nanoparticles with PMMA cores and BSA shells were prepared via a copper ion-mediated initiation system. The core-shell structure of the nanoparticles was characterized by transmission electron microscopy (TEM) and the surface compositions of the nanoparticles were tested by X-ray photoelectron spectroscopy (XPS), which further demonstrated that the particles have a BSA protein shell. The adsorption of these PMMA-BSA particles onto gold surfaces was studied by quartz crystal microbalance with dissipation (QCM-D). The significantly change of frequency shift and dissipation factor indicated that PMMA-BSA particles are adsorbed on the gold surface. The repeated buffer washing had nearly no effect on either frequency shift or dissipation factor, revealing that the adsorption is fairly strong. An amperometric glucose biosensor was constructed by immobilizing glucose oxidase on PMMA-BSA particles modified with glutaraldehyde, using a gold electrode as a substrate on which to adsorb the PMMA-BSA particles. Electrochemical measurements show this biosensor exhibited a good current response to glucose. Working at 0.3 V, the biosensor had a short response time of 11 s, a sensitivity of 28.6 μA·L-1·mmol-1·cm-2 and a linear range from 0.2 to 5.85 mmol·L-1 with a correlation coefficient of 0.989. After storage at 25℃ for one month, the sensor response current decreased by only 16%, thus showing good thermal stability.

Key wordsGlucose oxidase      Biosensor      Quartz crystal microbalance      Frequency      Dissipation      Adsorption     
Received: 14 May 2012      Published: 19 July 2012
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (21004040) and Natural Science Foundation of SZU (201102)

Cite this article:

HE Chuan-Xin, YUAN An-Peng, ZHANG Qian-Lin, REN Xiang-Zhong, LI Cui-Hua, LIU Jian-Hong. Adsorption of Core-Shell Poly(Methyl Methacrylate)-Bovine Serum Albumin Nanoparticles on Gold Surface and Its Sensor Application. Acta Phys. -Chim. Sin., 2012, 28(11): 2721-2728.

URL:     OR

(1) Wang, J. Chem. Rev. 2008, 108, 814. doi: 10.1021/cr068123a
(2) Koschwanez, H. E.; Reichert,W. M. Biomaterials 2007, 28,3687. doi: 10.1016/j.biomaterials.2007.03.034
(3) Hu, J. Biosens. Bioelectron. 2009, 24, 1083. doi: 10.1016/j.bios.2008.08.051
(4) Ge, F.; Cao, R. G.; Zhu, B.; Li, J. J.; Xu, D. S. Acta Phys. -Chim. Sin. 2010, 26, 1779. [戈芳, 曹瑞国, 朱斌, 李经建, 徐东升. 物理化学学报, 2010, 26, 1779.] doi: 10.3866/PKU.WHXB20100736
(5) Willner, I.; Baron, R.;Willner, B. Biosens. Bioelectron. 2007,22, 1841. doi: 10.1016/j.bios.2006.09.018
(6) Zargoosh, K.; Chaichi, M. J.; Shamsipur, M.; Hossienkhani, S.;Asghari, S.; Qandalee, M. Talanta 2012, 93, 37. doi: 10.1016/j.talanta.2011.11.029
(7) Xiao, X.; Zhou, B.; Zhu, L.; Xu, L.; Tan, L.; Tang, H.; Zhang,Y.; Xie, Q.; Yao, S. Sens. Actuators B 2012, 165, 126. doi: 10.1016/j.snb.2012.02.029
(8) Willner, I.;Willner, B.; Katz, E. Bioelectrochemistry 2007, 70,2. doi: 10.1016/j.bioelechem.2006.03.013
(9) Heller, A.; Feldman, B. Chem. Rev. 2008, 108, 2482. doi: 10.1021/cr068069y
(10) Guo, X. L.; Guo, M.;Wang, X. D. Acta Phys. -Chim. Sin. 2007,23, 585. [郭小丽, 郭敏, 王新东. 物理化学学报, 2007, 23,585.] doi: 10.3866/PKU.WHXB20070426
(11) Cui, G.; Kim, S. J.; Choi, S. H.; Nam, H.; Cha, G. S.; Paeng, K.J. Anal. Chem. 2000, 72, 1925. doi: 10.1021/ac991213d
(12) Weibel, M. K.; Bright, H. J. J. Biol. Chem. 1971, 246, 2743.
(13) Wrighton, M. S. Science 1986, 231, 32. doi: 10.1126/science.231.4733.32
(14) Frederick, K. R.; Tung, J.; Emerick, R. S.; Masiarz, F. R.;Chamberlain, S. H.; Vasavada, A.; Rosenberg, S.; Chakraborty,S.; Schopter, L. M.; Massey, V. J. Biol. Chem. 1990, 265, 3793.
(15) Hecht, H. J.; Schomburg, D.; Kalisz, H.; Schmid, R. D. Biosens. Bioelectron. 1993, 8, 197. doi: 10.1016/0956-5663(93)85033-K
(16) Yu, J.; Yu, D.; Zhao, T.; Zeng, B. Talanta 2008, 74, 1586. doi: 10.1016/j.talanta.2007.10.005
(17) Deng, S.; Jian, G.; Lei, J.; Hu, Z.; Ju, H. Biosens. Bioelectron.2009, 25, 373. doi: 10.1016/j.bios.2009.07.016
(18) Wei, Y.; Li, Y.; Liu, X.; Xian, Y.; Shi, G.; Jin, L. Biosens. Bioelectron. 2010, 26, 275. doi: 10.1016/j.bios.2010.06.006
(19) Zhang, G. L.; Pan, X. H.; Kan, J. Q.; Zhang, J. H.; Li, Y. F. Acta Phys. -Chim. Sin. 2003, 19, 533. [张国林, 潘献华, 阚锦晴,张景辉, 李永舫. 物理化学学报, 2003, 19, 533.] doi: 10.3866/PKU.WHXB20030611
(20) Qiu, J. D.; Huang, J.; Liang, R. P. Sens. Actuators B 2011, 160,287. doi: 10.1016/j.snb.2011.07.049
(21) Chen, X.; Zhu, J.; Chen, Z.; Xu, C.;Wang, Y.; Yao, C. Sens. Actuators B 2011, 159, 220. doi: 10.1016/j.snb.2011.06.076
(22) Che, X.; Yuan, R.; Chai, Y.; Li, J.; Song, Z.; Li,W.; Zhong, X.Colloids Surf. B 2011, 84, 454. doi: 10.1016/j.colsurfb.2011.01.041
(23) Valstar, A.; Vasilescu, M.; Vigouroux, C.; Stilbs, P.; Almgren,M. Langmuir 2001, 17, 3208. doi: 10.1021/la0016221
(24) Rodahl, M.; Höök, F.; Krozer, A.; Kasemo, B.; Breszinsky, P.Rev. Sci. Instrum. 1995, 66, 3924. doi: 10.1063/1.1145396
(25) Voinova, M. V.; Rodahl, M.; Jonson, M.; Kasemo, B. Phys. Scrip. 1999, 59, 31.
(26) Bloomfield, V. Biochemistry 1965, 5, 684.
(27) Hirayama, K.; Akashi, S.; Furuya, M.; Fukuhara, K. L.Biochem. Biophys. Res. Commun. 1990, 173, 639. doi: 10.1016/S0006-291X(05)80083-X
(28) Bos, O. J. M.; Labro, J. F. A.; Fischer, M. J. E.;Wilting, J.;Janssen, L. H. M. J. Biol. Chem. 1989, 264, 953.
(29) Bontempo, D.; Heredia, K. L.; Fish, B. A.; Maynard, H. D.J. Am. Chem. Soc. 2004, 126, 15372. doi: 10.1021/ja045063m
(30) Heredia, K. L.; Bontempo, D.; Ly, T.; Byers, J. T.; Halstenberg,S.; Maynard, H. D. J. Am. Chem. Soc. 2005, 127, 16955. doi: 10.1021/ja054482w
(31) Liu, J.; Bulmus, V.; Herlambang, D. L.; Barner-Kowollik, C.;Stenzel, M. H.; Davis, T. P. Angew. Chem. Int. Edit. 2007, 46,3099.
(32) Boyer, C.; Bulmus, V.; Liu, J.; Davis, T. P.; Stenzel, M. H.;Barner-Kowollik, C. J. Am. Chem. Soc. 2007, 129, 7145. doi: 10.1021/ja070956a
(33) Cascâo Pereira, L. G.; Théodoly, O.; Blanch, H.W.; Radke, C. J.Langmuir 2003, 19, 2349. doi: 10.1021/la020720e
(34) Zhu,W.; Kapteijn, F.; Moulijn, J. A.; den Exter, M. C.; Jansen,J. C. Langmuir 2000, 16, 3322. doi: 10.1021/la9914007
(35) Wassell, D. T.; Hall, R. C.; Embery, G. Biomaterials 1995, 16,697. doi: 10.1016/0142-9612(95)99697-K
(36) Rabe, M.; Verdes, D.; Zimmermann, J.; Seeger, S. J. Phys. Chem. B 2008, 112, 13971. doi: 10.1021/jp804532v
(37) Zhu, H.; Srivastava, R.; Brown, J. Q.; McShane, M. J.Bioconjugate Chem. 2005, 16, 1451. doi: 10.1021/bc050171z
(38) Shu, F. R.;Wilson, G. S. Anal. Chem. 1976, 48, 1679. doi: 10.1021/ac50006a014
(39) Kamin, R. A.;Wilson, G. S. Anal. Chem. 1980, 52, 1198. doi: 10.1021/ac50058a010

[1] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[2] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[3] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[4] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[5] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[6] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[7] Jing-Si CAO,Fei-Wu CHEN. Fitting and Extrapolation of Configuration Interaction Energies in Complete Active Space[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1130-1139.
[8] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[9] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[10] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[11] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[12] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2013-2021.
[13] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2029-2034.
[14] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2022-2028.
[15] Yan-Ting LI,Xin-Min LIU,Rui TIAN,Wu-Quan DING,Wei-Ning XIU,Ling-Ling TANG,Jing ZHANG,Hang LI. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1998-2003.